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Abstract

On Abstract Witt Rings and Quadratic Extensions

by

Jiajie Luo

The Witt ring of a field gives the structure of the isometry classes of quadratic forms

over that field. In particular, the Witt ring provides an algebraic invariant for fields away

from characteristic 2, which also allow us to study the orderings we can put on that field.

During the latter quarter of the 20th century, abstract Witt rings, a wider class of rings

that had the structure of a Witt ring but constructed independently from fields, were

introduced. In this thesis, we will use what is known about the structure of Witt rings

over quadratic extensions of fields in order to come up with an analog that extends over

to abstract Witt rings.
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Chapter 1

Introduction

The theory of quadratic forms has been studied since antiquity. Indeed, there have been

Babylonian tablets tracing back the second millennium BC mentioning integer solutions

to certain quadratic forms. More recently, the study of quadratic forms has been hugely

motivated by number theory, including the study of diophantine equations and lattices

over Z.

The algebraic theory of quadratic forms was largely pioneered by Ernst Witt in the

1930s. Witt introduced the study of quadratic forms over arbitrary fields, not necessarily

that of number theoretic origin. Among his contributions included the development of

the Witt ring of fields, which will be an important topic later discussed in this thesis.

Much of what Witt built went dormant for many years until a series of paper by

Albreich Pfister in the 1960s led to a resurgence in the topic. In the 1970s, the idea

of an abstract Witt ring was introduced by Manfried Knebusch, Alex Rosenberg, and

Roger Ware, which axiomatically gave the structure of Witt rings independently from

fields. This abstract theory, which encompassed the theory of quadratic forms over fields,

was later developed by Murray Marshall. Marshall was also motivated by the space of

orderings, which he introduced as a generalization of the quadratic form theory over fields.

In fact, there is a correspondence between abstract Witt rings and spaces of orderings.
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T. Y. Lam’s book, Quadratic Forms over Fields, discusses the theory of Witt rings

over quadratic extensions of fields. In particular, a sequence of Witt rings (viewed as

modules) is presented, which satisfies the condition of reciprocity. In this thesis, we will

explore the analog of Witt rings of quadratic extensions in the abstract setting. Namely,

we want our “quadratic extensions” to behave in the way prescribed for the field case.

One important motivation for abstracting the Witt ring of a quadratic field extension

is to help relate abstract Witt rings with pro-2 Galois groups. Given a field F , and

its quadratic closure Fq, one can determine Gal(Fq/F ) from the structure of W (F ).

From this, given F ′ in between F and Fq (ie. F ⊂ F ′ ⊂ Fq), we can compute W (F ′),

from which we can determine Gal(Fq, F
′). By understanding the analog of ‘quadratic

extensions’ of abstract Witt rings, we are able to determine the analog of the profinite

2-groups associated with abstract Witt rings.
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Chapter 2

Background

In this section, we will go over the background information, given by Lam [3] and Marshall

[4].

2.1 Preliminary Definitions

Let F be a field of characteristic not equal to 2.

Definition 2.1.1. A quadratic form, f : F n → F , of dimension n over F is a

second-degree homogeneous polynomial, of the form f =
∑

1≤i≤j≤n
aijxixj, where aij ∈ F .

f is isotropic if there is some nonzero x ∈ F n such that f(x) = 0, otherwise, f is

anisotropic.

Definition 2.1.2. For a nonzero f , we say that y ∈ F ∗ is represented by f if there

is some x ∈ F n such that f(x) = y, and we denote D(f) as the elements in F that are

represented.

Definition 2.1.3. We say two forms f and g of the same dimension are isometric

if f(x) = g(T (x)), for some isomorphism T : F n → F n, where n is the dimension of f

and g.
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Remark 2.1.1. If f and g are isometric, then D(f) = D(g).

We may also view quadratic forms in terms of matrices. Given a quadratic form

f =
∑

i≤i≤j≤n
aijxixj of dimension n, we form the n× n matrix Mf such that

(Mf )ij =


aij i = j

1
2
aij i < j

1
2
aji i > j

.

It can be easily seen that Mf will always be symmetric, and it is clear how to recover

f from Mf . In fact, given any n × n symmetric matrix M , we can find a unique corre-

sponding quadratic form of degree n given by

fM(x) = xMxT

where x is viewed as a row vector.

Definition 2.1.4. The discriminant of f is defined as disc(f) = det(Mf ). We say

that f is degenerate if disc(f) = 0. Otherwise, f is nondegenerate.

Remark 2.1.2. There is a one-to-one correspondence between symmetric matrices over

F and quadratic forms.

From here on out, we assume our quadratic forms are all nondegenerate.

2.2 Basic Results

In this section, we will go over some standard basic results.

Theorem 2.2.1. All quadratic forms can be diagonalized. That is, any

quadratic form f is isometric to some form f̄ where f̄ =
n∑
j=1

ajx
2
j . In this case, we note

that Mf̄ is a diagonal matrix.
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From here on out, we will represent the isometry classes of nondegenerate quadratic

forms by a diagonalized representative. Notationally, we refer to the form
n∑
j=1

ajx
2
j as

〈a1, a2, · · · , an〉.

Theorem 2.2.2.

1. f ∼= g =⇒ dim(f) = dim(g) and disc(f) ∼= disc(g) mod F ∗2

2. f ∼= g =⇒ af ∼= ag for every a ∈ F ∗.

3. 〈a1b
2
1, · · · , anb2

n〉 ∼= 〈a1, · · · , an〉.

4. For any permutation π ∈ Sn, 〈a1, · · · , an〉 ∼= 〈aπ(1), · · · , aπ(n)〉.

5. If 〈a1, · · · , ak〉 ∼= 〈b1, · · · , bk〉 and 〈ak+1, · · · , an〉 ∼= 〈bk+1, · · · , bn〉,

then 〈a1, · · · , an〉 ∼= 〈b1, · · · , bn〉.

The following lemma characterizes isometry of one dimensional and two dimensional

forms:

Lemma 2.2.1. Let a, b, c, d ∈ F ∗. Then

1. 〈a〉 ∼= 〈b〉 if and only if a ∼= b mod F ∗2

2. 〈a, b〉 ∼= 〈c, d〉 if and only if ab ≡ cd mod F ∗2 and there are x, y ∈ F such that

c = ax2 + by2.

Theorem 2.2.3. The form 〈1,−1〉 is universal. That is, D(〈1,−1〉) = F .

This can be easily seen, as for any a ∈ F , we can find x, y ∈ F such that x − y = 1

and x+ y = a, which would mean x2 − y2 = a.

As a consequence of some of the above theorems, we have the following result:

Corollary 2.2.1. For any a ∈ F ∗, 〈a,−a〉 ∼= 〈1,−1〉.
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We now discuss the relation of the form 〈1,−1〉 to isotropic forms.

Theorem 2.2.4. For n ≥ 3, f = 〈a1, · · · , an〉 is isotropic, if and only if there exists

b3, · · · , bn such that f ∼= 〈1,−1, b3, · · · , bn〉.

We denote 〈1,−1〉 by H, which we call the hyperbolic form. This form has an impor-

tant role in the theory of quadratic forms, as it plays the role of 0 in the Witt ring.

Now, we state Witt’s Cancellation Theorem, which is central in the development of

the Witt Ring.

Theorem 2.2.5 (Witt’s Cancellation Theorem). Suppose

〈a1 · · · , an〉 ∼= 〈b1, · · · , bn〉 and a1 = b1. Then 〈a2 · · · , an〉 ∼= 〈b2, · · · , bn〉.

2.3 The Witt Ring over Fields

In this section, we show the construction of the Witt ring over a field F .

Let M(F ) be the set of isometry classes of nondegenerate forms over F . As before,

we represent our isometry classes with diagonal representations.

Definition 2.3.1. Given quadratic forms f = 〈a1, · · · , an〉 and

g = 〈b1, · · · , bm〉, the perpendicular sum (also known as the direct sum) of f and g,

denoted as f ⊥ g = 〈a1, · · · , an, b1, · · · , bm〉. The tensor product of f and g is given

by f ⊗ g = 〈a1b1, · · · , a1bn, · · · , anb1, · · · , anbm〉.

Lemma 2.3.1. With ⊥ as addition and ⊗ as multiplication, (M(F ),⊥,⊗) is a semiring.

It is easy to see that M(F ) does not form a group under addition, since additive

inverses don’t exist. To remedy this, we construct the Witt-Grothendieck ring, Ŵ (F ) by

using the classical construction due to Grothendieck.
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Definition 2.3.2. Let ∼ be an equivalence relationship on M(F )×M(F ), where (f, g) ∼

(f ′, g′) if f ⊥ g′ ∼= f ′ ⊥ g (the congruence here is isometry). The Witt-Grothendieck

ring of F , Ŵ (F ), is defined as M(F )×M(F )/ ∼.

We note that an elements of Ŵ (F ), (f, g), can be thought of as f − g. We can make

the identification of M(F ) ↪→ Ŵ (F ) by f 7→ (f, 0).

Theorem 2.3.1. We define the Witt Ring of F by W (F ) = Ŵ (F )/〈H〉, where H is

the hyperbolic form.

Remark 2.3.1. We note that in W (F ), −〈a〉 = 〈−a〉.

2.4 The Abstract Witt Ring

Let us now discuss the abstract Witt ring, a generalization of Witt rings over fields.

Definition 2.4.1. Let G is an abelian 2-group (ie. x2 = 1 for all x ∈ G) and Q be a

pointed set with distinguised point denoted 0. Then q : G × G → Q is a quaternionic

pairing if it is a surjective mapping satisfying

Q1: (Symmetry) q(a, b) = q(b, a)

Q2: q(a,−a) = 0

Q3: (Weak Bilinearity) q(a, b) = q(a, c) if and only if q(a, bc) = 0

Q4: (Linkage) If q(a, b) = q(c, d), then there’s some x ∈ G such that q(a, b) = q(a, x)

and q(c, d) = q(c, x).

We define such a triple (G,Q, q) as a quaternionic structure (Q-structure for

short).

The following consequences arise as a result of these axioms:

7



Lemma 2.4.1. For all a, b ∈ G, we have

1. q(a, 1) = 0

2. q(a, a) = q(a,−1)

3. q(a,−ab) = q(a, b)

We in fact have a theory of quadratic forms associated for Q-structures that mirror

the theory of quadratic forms over fields.

Definition 2.4.2. Given a Q-structure (G,Q, q), a quadratic form of dimension n over

G is an n-tuple f = 〈a1, · · · , an〉, where ai ∈ G. The discriminant of f = 〈a1, · · · , an〉 is

disc(f) = a1 · · · an.

As before we refer to 〈1,−1〉 as the hyperbolic form.

We now define isometry as follow:

Definition 2.4.3. Two forms are n dimensional forms are isometric if

1. For n = 1, we say that 〈a〉 ∼= 〈b〉 if and only a = b.

2. For n = 2, we say that 〈a, b〉 ∼= 〈c, d〉 if and only if ab = cd and q(a, b) = q(c, d).

3. For n > 2, isometry is inductively defined by 〈a1, · · · , an〉 ∼= 〈b1, · · · , bn〉 if and only

if there’s a, b, c3, · · · , cn ∈ G such that

〈a2, · · · , an〉 ∼= 〈a, c3, · · · , cn〉, 〈b2, · · · , bn〉 ∼= 〈b, c3, · · · , cn〉, and

〈a1, a〉 ∼= 〈b1, b〉.

As before, isometry can be shown to be an equivalence relation.

Remark 2.4.1. These properties are shown to hold for the field case.

Much of the relevant results made about quadratic forms over fields can be ported over

to the setting of quadratic forms over Q-structures. Here are some relevant definitions

and results that are analogous to Witt rings over fields.
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Definition 2.4.4. We say that a form f represents x ∈ G if there are x2, · · · , xn ∈ G

such that f ∼= 〈x, x2, · · · , xn〉.

We also have an analogous notion of isotropy, with 〈1,−1〉 being our hyperbolic form:

Definition 2.4.5. We say a form f is isotropic if f ∼= 〈1,−1〉 ⊥ g, for another form

g. Otherwise, f is anisotropic.

In particular, we have an analog on Witt cancellation:

Theorem 2.4.1 (Witt’s Cancellation). Given forms f, g, g′ over G, we have g ∼= g′ if and

only if f ⊥ g′ ∼= f ⊥ g. In fact, given f, f ′, g, g′ where f ∼= f ′, we have f ⊥ g ∼= f ′ ⊥ g′.

Here, ⊥ is exactly what it was in the field case. In fact, we can define addition and

multiplication of quadratic forms over (G,Q, q) the same way it was defined for quadratic

forms over a field. Now that we have a notion of quadratic forms and isometries, the

(abstract) Witt ring over (G,Q, q) can be constructed the same way it was for quadratic

forms over fields.

Proposition 2.4.1. If we define G(F ) = F ∗/F ∗2, Q(F ) as the set of quadratic forms

over F that are of the form 〈1,−a,−b, ab〉, and qF : G×G→ Q by

qF (a, b) = 〈1,−a,−b, ab〉, then the abstract Witt ring over (G(F ), Q(F ), qF ) is exactly

W (F ).

Remark 2.4.2. Given a Q-structure (G,Q, q), and its abstract Witt ring R, we will refer

to G (which we may also denote S(R)) as the square class group of R.

9



2.5 Building up Bigger Abstract Witt Rings

We will now discuss how to build abstract Witt rings from existing ones.

The first construction is to use the direct product in the category of abstract Witt

rings.

Definition 2.5.1. Let R1 and R2 be abstract Witt rings. Then the fiber product over

Z/2Z is given by

R1

∐
Z/2Z

R2 = {(a, b)|a ∈ R1, b ∈ R2, dim(a) ∼= dim(b) mod 2}.

We can extend this definition for an arbitrary number of abstract Witt rings.

Proposition 2.5.1. The fiber product of abstract Witt rings over Z/2Z is the direct

product in the category of Witt rings. We will abbreviate this to just
∐

. In this case,

Given abstract Witt rings Ri for i ∈ I, we have S(
∐

i∈I Ri) =
∏

i∈I S(Ri).

Another way we can construct abstract Witt rings is by extending by 2-groups.

Proposition 2.5.2. Let R be an abstract Witt ring, and let ∆n = (Z/2Z)n. Then the

group ring R[∆n] is an abstract Witt ring, with S(R[∆n]) = S(R)×∆n.

Definition 2.5.2. Let R be an abstract Witt ring with square class group G. We say

that a ∈ G is rigid if D(〈1, a〉) = {1, a}.

Lemma 2.5.1. Let R = R1[∆n], and let H denote the subgroup of S(R) that corresponds

to S(R1). Then, we every element of S(R) \H is rigid.

2.6 Witt Ring of Algebraic Extensions

We now discuss some results regarding Witt rings of algebraic field extensions. In par-

ticular, we will focus on the Witt rings of quadratic extensions.
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We begin by introducing the transfer map. Let F be a field and K be an algebraic

extension of F . Let r : F ↪→ K be the inclusion map of F into K. We denote r∗ :

W (F )→ W (K) as the induced map by r (in the categorical sense). Namely, for a form

q, r∗(q) = qK is given by the same form (that is, the form with the same coefficients, but

now seen as elements of K) in W (K).

Now, consider a nonzero F -linear functional s : K → F . Since s is nonzero and linear,

we see that s is surjective. Similarly, we denote s∗ : W (K)→ W (F ) as the map induced

by s. More specifically, given a quadratic space V over K with corresponding form q, we

have that s∗(q)(v) = s(q(v)) ∈ F (to see this is well defined, see Lam).

Theorem 2.6.1 (Springer’s Theorem on Odd-degree extensions). Let K/F be an odd

degree extension. If a quadratic form q ∈ W (F ) is anisotropic over F , then q ∈ W (K)

is anisotropic over K.

In other words, if K/F is an odd degree extension, the mapping r∗ : W (F )→ W (K)

is injective. This does not carry over for even degree extensions. For example, if we

consider R ⊂ C, the form 〈1, 1〉 is anisotropic in R, but hyperbolic in C.

Theorem 2.6.2. (Frobenius Reciprocity) Let K be an algebraic extension of F . Let

f ∈ W (F ) and g ∈ W (K). Then s∗(r
∗(f)⊗ g) = f ⊗ s∗(g).

Now, we will discuss the Witt ring of quadratic extensions (ie. extension of degree

2). Suppose K = F (
√
d), where d is not a square in F . We denote the form δ = 〈1,−d〉.

Theorem 2.6.3. Let F ⊂ K be defined as above. Suppose q is anisotropic in F . Then

qK is hyperbolic over K if and only if there is some form θ such that qF ∼= δ ⊗ θ. This

means the kernel of r∗ : W (F )→ W (K) is the ideal (δ).

11



Theorem 2.6.4. Using the notation defined above, let s : K → F be the linear map

defined by s(1) = 0 and s(
√
d) = 1. Let s∗ be the transfer map defined by s. Then the

following sequence is exact:

0→ W (F ) · δ → W (F )
r∗→ W (K)

s∗→ W (F )
t→ W (F ) · δ → 0,

where t : W (F )→ W (F ) is defined by q 7→ q⊗ δ. Consequently, we have the short exact

sequence

0→ coker(t)
r∗→ W (K)

s∗→ ker(t)→ 0.

Remark 2.6.1. The above short exact sequence splits.

Remark 2.6.2. In order to show reciprocity in this context, it is enough to define a lift

l : ker(t) → W (K) and show that given f ∈ W (F ) and g ∈ ker(t), we have l(f ⊗ g) =

r(f)⊗ l(g). This is how we will be showing reciprocity.

Here, we see that coker(t) = W (R)/δ ⊗W (R), and ker(t) = ann(〈1,−d〉). We will

use following result in the setting of abstract Witt rings:

Theorem 2.6.5. Given a form f , ann(f) is generated by all forms of the form 〈1,−x〉,

for x ∈ D(f).

The above exact sequence is enough to determine the W (F )-module structure of

W (K). The ring structure, however, requires knowledge of the structure of K.

2.7 Formulating our Problem

In this thesis, we will work to extend the theory of Witt rings of quadratic extensions of

fields to the setting of abstract Witt rings. To set this up, take an abstract Witt ring

R, with its corresponding square class group S(R). Let d ∈ S(R) be nontrivial, and let

δ = 〈1,−d〉. We will consider the possible ring structures on R′ that fit into an exact

12



sequence

0→ R · δ ↪→ R
r→ R′

s→ R
t→ R · δ → 0,

for suitable r and s, where r is a ring homomorphism, s is a R-module homomorphism,

and t is the map given by multiplication by δ. This is equivalent to finding the structures

of R′ where we have the (split) short exact sequence

0→ coker(t)
r→ R′

s→ ker(t)→ 0

for suitable r and s, and a lift l : ker(t)→ R′.

We will set another condition to the structure of R′, given below:

We note that coker(t) (a quotient ring of R) and ker(t) (an ideal of R) are both R-

modules, which means our split short exact sequence is of R-modules. This means that

as an R-module, R′ ∼= coker(t)⊕ker(t). So, R′, which we may also refer to as R[
√
d], can

be written as M ⊕ N , where M , which is the image of r, is a subring of R′ isomorphic

to a quotient ring of R, and N , the image of l, is another R-module. Furthermore, we

note that the coker(t) action (by multiplication) on ker(t) induced by the action of R (by

multiplication) is well defined, as coker(t) = R/R · δ, while ker(t) = ann(δ). Specifically,

given q, q′ ∈ R such that q = q′ in coker(t), we see that q and q′ act in the same way.

Thus, the coker(t) action on ker(t) should be mirrored in the multiplication between

elements of M and N .

The maps r : coker(t) → R′ and l : ker(t) → R′ allows us to see view coker(t) and

ker(t) as the two summands of R[
√
a]. Here, there is a natural way for elements in M

and N to multiply, which is given by the coker(t) action on ker(t). We want this action

to be compatible with how the multiplication in R′ works. That is, given q ∈ coker(t)

and f ∈ ker(t), we want r(q)⊗ l(f) = l(q ⊗ f).

Remark 2.7.1. This compatibility of module action with the lift is simply Frobenius

reciprocity.
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Chapter 3

A Motivating Example

Let us now discuss an important example as well as a generalization that follows from it.

3.1 Field of Laurent Series

Definition 3.1.1. Let F be a field. We define

F ((t)) =

{
∞∑
N

anx
n|N ∈ Z, aj ∈ F

}
.

as the Laurent series field over F .

By using an iterated Newton’s method, it can be shown that all series with more than

one term can be written as a square. In fact, one can show the following:

Proposition 3.1.1. F ((t)) forms a field. The square class is given by

F ((t))∗/(F ((t))∗)2 = F ∗/F ∗2 ⊕ 〈t〉.

From this, we have an analogous result in terms of the Witt rings of Laurent fields.

Theorem 3.1.1 (Springer). Let F be a field away from characteristic 2. We have

the following isomorphism: W (F ((t))) ∼= W (F )[∆1]. In fact, we may extend this to

W (F ((t1, · · · , tn))) ∼= W (F )[∆n]. (where ∆n = (Z/2Z)n).
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3.2 Taking the Square Root of t

Let us now consider what happens when we take the square root of t. That is, we have the

quadratic extension F ((t))(
√
t) = F ((

√
t)), which is isomorphic to F ((t)). This means

that W (F ((t))) ∼= W (F ((
√
t))). Thus, we see that taking the square root of t in this

context yields an isomorphic Witt ring. We will use the details of this example to explore

what happens in the abstract case.

We note that we can write W (F ((t))) = W (F ) ⊕ W (F ) · 〈t〉 (as a direct sum of

W (F ((t)))-modules). Moreover, we note that W (F ((t))) · 〈1,−t〉 = W (F ) · 〈1,−t〉, since

〈t〉 ⊗ 〈1,−t〉 = −〈1,−t〉. Similarly, we have W (F ((t))) · 〈1, t〉 = W (F ) · 〈1, t〉.

In this subsection, we will denote s : W (F ((t))) → W (F ((t))) as the map q 7→ q ⊗

〈1,−t〉. Here, we note that coker(s) = W (F ((t)))/W (F ((t))) while ker(t) = W (F ((t))) ·

〈1, a〉 (= W (F ) · 〈1, a〉), since D(〈1,−t〉) = {1,−t}. From this, we have the following

short exact sequence:

0→ W (F ((t)))/W (F ((t))) · 〈1,−t〉 r
∗
→ W (F ((

√
t)))

s∗→ W (F ) · 〈1, t〉 → 0.

We can view W (F ((
√
t))) as W (F )⊕W (F )·〈

√
t〉. When we look at r∗ : W (F ((t)))→

W (F ((
√
t))), we note that the image of r∗ is the W (F ) summand of the codomain.

Thus, when we view r∗ as a map with domain W (F ((t)))/W (F ((t))) · 〈1,−t〉, r∗ maps

isomorphically onto the W (F ) summand of W (F ((
√
t))).

Now, let us look at s∗ : W (F ((
√
t)))→ W (F ((t))). By our choice of s (where 1 7→ 0

and
√
t 7→ 1), we see that ker(s∗) is exactly the W (F ) summand of W (F ((

√
t))). Thus,

we see that s∗ isomorphically maps the W (F ) · 〈t〉 summand to

W (F ) · 〈1, t〉 (= W (F ((t))) · 〈1, t〉).

Thus, we have the following short exact sequence

0→ W (F ((t)))/W (F ((t))) · 〈1,−t〉 r
∗
→ W (F )⊕W (F ) · 〈

√
t〉 s∗→ W (F ) · 〈1, t〉 → 0

where we see that in the middle, the W (F ) summand is the image of r∗ and the kernel of
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s∗, while the W (F ) · 〈
√
t〉 summand maps isomorphically to W (F ) · 〈1, t〉. This is because

we may view both these summands as W (F ((t))) modules.

We now construct a lift l : W (F ) · 〈1, t〉 where q⊗〈1, t〉 7→ q⊗〈
√
t〉. Let us check that

our module action is preserved with this lift. That is, given q ∈ coker(s) and f ⊗ 〈1, t〉,

we have l(f ⊗ 〈1, t〉)⊗ r∗(q) = l(q ⊗ f ⊗ 〈1, t〉). We may take q to be the representative

of the form where there are no t’s present (ie. viewing it as an element of W (F )), as in

coker(t), we have 〈1〉 = 〈t〉. Similarly, we may r∗(q) ∈ W (F ((
√
t))) also as an element

of W (F ), and moreover, with r∗(q) = q.

Thus, as desired, we have

l(f ⊗ 〈1, t〉)⊗ r∗(q) = q ⊗ l(f ⊗ 〈1, t〉)
= q ⊗ f ⊗ 〈

√
t〉

= l(q ⊗ f ⊗ 〈1, t〉).

3.3 Generalizing the Previous Finding

We will now use our previous observation to make the following claim:

Theorem 3.3.1. Let R be any abstract Witt ring. Given R[∆1], where ∆1 is generated

by t, then R[∆1][
√
t] ∼= R[∆1].

Proof. First, we see that S(R[∆1]) = S(R)⊕ 〈t〉.

Here, we can express R[∆1] = R⊕R · 〈t〉 as a direct sum of modules. We will denote

our claimed quadratic extension as R′ = R ⊕ R · 〈
√
t〉, where t = 1 in S(R′). We want

to find r and s such that we have the following exact sequence, with our desired module

action to be preserved:

0→ (R⊕R · 〈t〉)/((R⊕R〈t〉) · 〈1,−t〉) r→ R⊕R · 〈
√
t〉 s→ ann〈1,−t〉 → 0.

We note that (R ⊕ R · 〈t〉)/(R ⊕ R · 〈t〉) · 〈1,−t〉 ∼= R, as in this ring, we have that

〈1〉 = 〈t〉. Let us now find ann(〈1,−t〉). We note that in this case, −t is rigid, and as
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such, D(〈1,−t〉) = {1,−t}, in which case, ann(〈1,−t〉) is generated by 〈1, t〉 and the

hyperbolic form, so ann(〈1,−t〉) = (R⊕R〈t〉) · 〈1, t〉. As 〈t〉 ⊗ 〈1, t〉 = 〈1, t〉, we see that

this can be written R · 〈1, t〉.

Let us now construct our map r : (R⊕R · 〈t〉)/((R⊕R〈t〉) · 〈1,−t〉)→ R⊕R · 〈
√
t〉.

We first notice that we can represent each element of (R⊕R · 〈t〉)/((R⊕R〈t〉) · 〈1,−t〉)

by 〈q〉, for q ∈ R. Thus, to construct r, we simply map 〈q〉 7→ q. Well definition of this

map is clear, as 〈1,−t〉 7→ 0.

Similarly, we construct s : R⊕R · 〈
√
t〉 → R · 〈1, t〉 by sending q 7→ 0 and q′⊗〈

√
t〉 7→

q′〈1, t〉, for q, q′ ∈ R.

From this, we have the following split short exact sequence of modules as desired:

0→ (R⊕R · 〈t〉)/((R⊕R〈t〉) · 〈1,−t〉) r→ R⊕R · 〈
√
t〉 s→ R · 〈1, t〉 → 0.

As before, we may have the first map mapping isomorphically onto the R summand,

while the second map has the R summand as its kernel and maps the R · 〈
√
t〉 summand

isomorphically onto R · 〈1, t〉 by 〈
√
t〉 7→ 〈1, t〉.

We now construct an analogous lift as before: let l : R · 〈1, t〉 → R ⊕ R · 〈
√
t〉 map

q · 〈1, t〉 7→ q · 〈
√
t〉.

Let us now show the module action is preserved. That is, given q ∈ (R⊕R ·〈t〉)/((R⊕

R〈t〉) · 〈1,−t〉) and f ⊗ 〈1, t〉 ∈ R · 〈1, t〉, we want to show that r(q)l(f ⊗ 〈1, t〉) =

l(q ⊗ f ⊗ 〈1, t〉). As before, we may take q to be the representative without any t’s (ie.

viewing it as a member of R). Similarly, we may view r(q) = q as the same member, but

of the R-summand.

So, as desired, we see

l(f ⊗ 〈1, t〉)⊗ r∗(q) = q ⊗ l(f ⊗ 〈1, t〉)
= q ⊗ f ⊗ 〈

√
t〉

= l(q ⊗ f ⊗ 〈1, t〉).
�
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We may take our result one step forward with the following corollary:

Corollary 3.3.1. Let R be any abstract Witt ring. Let ∆n be generated by t1, · · · , tn.

R[∆n][
√
ti1 · · · tik ] ∼= R[∆n], where 1 ≤ i1 < · · · < ik ≤ n.

Proof. Let R̃ = R[∆n−1], where ∆n−1 is generated by t1, · · · , ti1−1, ti1+1, · · · , tn. It is easy

to see that R[∆n] ∼= R̃[∆1], where ∆1 is generated by ti1 · · · tik . By applying our theorem

above to R̃[∆1], we are done. �
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Chapter 4

Another Motivating Example

Let R = Z
∐

Z
∐

Z, and let β1 = (−1, 1, 1), β2 = (1,−1, 1), and β3 = (1, 1,−1). We

also refer to (1, 1, 1) as 1. We note that in this case, the only thing we need to take the

square root of are β1 and β1β2, as all the other elements from the square class that we

can take the square root of can be done similarly.

4.1 Taking the root of β1

We note that we can write R = Z · 〈1〉 ⊕Z · 〈1,−β1〉 ⊕Z · 〈1,−β2〉. Letting t : R→ R as

defined by multiplication of 〈1,−β1〉. Let us first look at the kernel and cokernel of t.

First, let us look at coker(t) = R/R · 〈1,−β1〉. In this quotient ring, we have 〈β1〉 =

〈1〉, 〈β2〉 = 〈β1β2〉, and 〈β3〉 = 〈β1β3〉. In particular, we note that we originally had

β1β2β3 = −1, which tells us β2β3 = −1 in our quotient, or in other words, β2 = −β3.

So, we see that

coker(t) = Z · 〈1〉 ⊕ Z · 〈1,−β2〉.

Now, let us look at ker(t), which is simply the annihilator of 〈1,−β1〉. First, we

note that 〈1,−β1〉 represents (1,±1,±1), in which case, the annihilator is generated by

〈1,−(1,±1,±1) = 〈1, (−1,±1,±1)〉, or in other words, generated by 〈1, β1〉, 〈1, β1β2〉 =
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〈1,−β3〉, 〈1, β1β3〉 = 〈1,−β2〉, 〈1, β1β2β3〉 (the last of which can be checked to be the

hyperbolic form). We observe that 〈1,−βi〉 ⊗ 〈1,−βj〉 = 0 for i 6= j. From this, we

note that 〈1,−β3〉 ⊥ 〈1,−β2〉 = 〈1,−β3,−β2, β2β3〉 ⊥ 〈1,−β2β3〉 = 〈1, β1〉. So, as an

R-module, ann(〈1,−β1〉) is generated by 〈1,−β2〉 and 〈1,−β3〉. In fact, it can be checked

that ann(〈1,−β1〉) = Z · 〈1,−β2〉 ⊕ Z · 〈1,−β3〉

Theorem 4.1.1. Given R = Z
∐

Z
∐

Z, we have R[
√
β1] ∼= Z

∐
Z
∐

Z
∐

Z.

Proof. We note thatR[
√
β1] must be a direct sum of twoR-modules, which are isomorphic

to R/R · 〈1,−β1〉 and ann(〈1,−β1〉). We note that as β1 = (−1, 1, 1), we see two orders

extend (while one does not) in two ways, and thus, R[
√
β1] has four orders. To see the

rank of the group of square classes R
√
β1 must have, we first note that R/R · 〈1,−β1〉

eliminates one of the square classes, leaving behind two. We note that ann(〈1,−β1〉)

is generated by 〈1, β1〉 and 〈1, β1β2〉, which translates another two generators. Thus,

R[
√
β1] must have four square classes, which is also the number of its orders. Thus,

heuristically, we have R[
√
β1] ∼= Z

∐
Z
∐

Z
∐

Z.

What is left is to write down the maps from R/R · 〈1,−β1〉 → Z
∐

Z
∐

Z
∐

Z →

ann(〈1,−δ1〉) that preserver exactness.

We can write Z
∐

Z
∐

Z
∐

Z = Z〈1〉⊕Z · q1⊕Z · q2⊕Z · q3, where q1 = 〈1,−γ1〉, q2 =

〈1,−γ2〉, and q3 = 〈1,−γ3〉. Note that, q1 = (2, 0, 0, 0), q2 = (0, 2, 0, 0) and q3 = (0, 0, 2, 0)

when viewed as a ring element. Here, we note that qi ⊗ qj = 0, for i 6= j. We also note

we can write Z
∐

Z
∐

Z
∐

Z = Z · 〈1〉⊕Z · q1⊕Z · q2⊕Z · q3. Here, we construct the map

r : R/R · 〈1,−β1〉 → Z
∐

Z
∐

Z
∐

Z where we take 〈1〉 7→ 〈1〉 and 〈β2〉 7→ 〈γ1〉. Since

q2 = 〈1,−γ1〉, we note that the image of r is the Z · 〈1〉 ⊕Z · q1 summand. We define our

map s : Z
∐

Z
∐

Z
∐

Z = Z·〈1〉⊕Z·q1⊕Z·q2⊕Z·q3 → ann(〈1,−β1〉) by 〈1〉 7→ 0, q1 7→ 0,

q2 7→ −〈1,−β2〉, and q3 7→ 〈1,−β3〉. Indeed, this gives us exactness as we desired. Here,

the corresponding lift is given by l : ann(〈1,−β1〉)→ Z · 〈1〉⊕Z · q1⊕Z · q2⊕Z · q3 where

〈1,−β2〉 7→ −q2 and 〈1,−β3〉 7→ q3. Moreover, we see that multiplying elements
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between Z · 〈1〉 ⊕Z · q1 and Z · q2⊕Z · q3 stays in Z · q2⊕Z · q3: given p1 ∈ Z · 〈1〉 ⊕Z · q1

and p2 ∈ Z · q2 ⊕ Z · q3, we have that p1 ⊗ p2 ∈ Z · q2 ⊕ Z · q3, since 〈1〉 ⊗ q2 = q2 (and

similarly for q3), while q1⊗ q2 = q1⊗ q3 = 0. To see that the module action is preserved,

we note that 〈β2〉⊗〈1,−β2〉 = 〈β2,−1〉 = −〈1,−β2〉, while r(〈β2〉)⊗ l(〈1,−β2〉) = 〈γ1〉⊗

(−q2) = 〈γ1〉 ⊗ (−〈1,−γ2〉) = −〈γ1,−γ1γ2〉. Since 〈1,−γ1,−γ2, γ1γ2〉 = 0, we see that

−〈γ1,−γ1γ2〉 = −〈1,−γ2〉. So we see l(〈β2〉 ⊗ 〈1,−β2〉) = −l(〈1,−β2〉) = −〈1,−γ2〉 =

l(〈1,−β2〉)⊗ r(〈β2〉). With a similar computation, we can show that l(〈β2〉⊗ 〈1,−β3〉) =

l(〈1,−β3〉)⊗ r(〈β2〉), which tells us indeed that the module action is respected. �

4.2 Taking the root of β1β2

With t : R→ R be multiplication by 〈1,−β1β2〉, let us first look at ker(t) and coker(t).

We begin with coker(t) = R/R · 〈1,−β1β2〉. We note that if we write R = Z · 〈1〉 ⊕

Z · 〈β1〉 ⊕ Z · 〈β1β2〉, we see that R · 〈1,−β1β2〉 = Z · 〈1,−β1β2〉 + Z · 〈β1,−β2〉. This

tells us that in R/R · 〈1,−β1β2〉, we have 〈β1〉 = 〈β2〉, and that 〈1〉 = 〈β1β2〉. From

this, we see that R/R · 〈1,−β1β2〉 is generated by 〈1〉 and 〈β1〉, which equivalently, can

be generated by 〈1〉 and 〈1,−β1〉. We note that 〈1,−β1〉 has torsion, since 〈1,−β1〉 ⊥

〈1,−β1〉 = 〈1,−β1, 1,−β1〉 = 〈1,−β1, β2,−β1β2〉 = 〈1,−β1β2〉 ⊥ 〈β1,−β2〉 = 0 (indeed,

these are elements in R · 〈1,−β1β2〉). We know that 〈1〉 is torsion free, which means we

can write R/R · 〈1,−β1β2〉 = Z · 〈1〉 ⊕ (Z/2Z) · 〈1,−β1〉

Let us now examine ann〈1,−β1β2〉. We note that

〈1,−β1β2〉 = 〈1,−(−1,−1, 1)〉 = 〈1, (1, 1,−1)〉, which tells us that it represents (1, 1,±1).

This tells us that ann〈1,−β1β2〉 is generated by 〈1,−(1, 1,−± 1)〉, thus amounting to

〈1, (−1,−1,±1)〉. This is precisely 〈1, β1β2〉 and the hyperbolic form, which tells us that

ann〈1,−β1〉 is generated by 〈1, β1β2〉 as an R-module. In fact, it can be easily verified

to be Z · 〈1, β1β2〉.

Now, since we are taking the square root of β1β2, which is (−1,−1, 1) in our ring,

21



we note that only one order extends (into two), while the first two do not. As we are

quotienting by R · 〈1,−β1β2〉, we are losing one of our square class generators. However,

since ann〈1,−β1β2〉 = Z · 〈1, β1β2〉, we are gaining a square class generator. Thus, in

R[
√
β1β2], we have two orders and three square classes. Thus, heuristically, we have three

fiber product factors, two of which are Z and one of which is singly generated and has

torsion. So heuristically, we have R[
√
β1β2] ∼= Z

∐
Z
∐

Z/4Z.

Theorem 4.2.1. With R = Z
∐

Z
∐

Z, we have R[
√
β1β2] ∼= Z

∐
Z
∐

Z/4Z.

Proof. Let us now look at Z
∐

Z
∐

Z/4Z. Denote 1 = (1, 1, 1), γ1 = (−1, 1, 1), γ2 =

(1,−1, 1), and γ3 = (1, 1,−1). We know that elements here look like (even, even, even)

or (odd, odd, odd). We can check that Z
∐

Z
∐

Z/4 is generated by 〈1〉, 〈1,−γ2〉, and

〈1,−γ3〉. We note that this corresponds to (1, 1, 1), (0, 2, 0), and (0, 0, 2) as generators.

We can readily check 〈1,−γ3〉 ⊥ 〈1,−γ3〉 = 0. So, we can express Z
∐

Z
∐

Z/4Z =

Z · 〈1〉 ⊕ Z · 〈1,−γ2〉 ⊕ (Z/2Z) · 〈1,−γ3〉.

Let us now construct our maps. Let r : R/R · 〈1,−β1β2〉 → Z
∐

Z
∐

Z/4Z

(= Z · 〈1〉 ⊕ Z · 〈1,−γ1〉 ⊕ (Z/2Z) · 〈1,−γ3〉) be define by 〈1〉 7→ 〈1〉, and

〈1,−β1〉 7→ 〈1,−γ3〉 (note that 〈β1〉 7→ 〈γ3〉). We can easily see that r is injective with

its image being Z · 〈1〉 ⊕ Z/2Z · 〈1,−γ3〉. Let

s : Z
∐

Z
∐

Z/4Z (= Z · 〈1〉 ⊕ Z · 〈1,−γ2〉 ⊕ (Z/2Z) · 〈1,−γ3〉)

→ ann(〈1,−β1β2〉) be defined by 〈1〉 7→ 0, 〈1,−γ3〉 7→ 0, and 〈1,−γ2〉 7→ 〈1, β1β2〉. By

construction, it is easy to see that the following is a short exact sequence:

0→ R/R · 〈1,−β1β2〉
r→ Z

∐
Z
∐

Z/4Z s→ ann(〈1,−β1β2〉)→ 0.

The corresponding lift is l : ann(〈1,−β1β2〉) → Z
∐

Z
∐

Z/4Z by 〈1, β1β2〉 7→ 〈1,−γ2〉.

It is easy to see that the image of r acts on the image of l, since 〈1〉⊗ 〈1,−γ2〉 = 〈1,−γ2〉

and 〈γ1〉 ⊗ 〈1,−γ2〉 = 〈γ1,−γ1γ2〉 = 〈1,−γ2〉. To see that our life l is indeed compatible

with the module action, we note that
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l(〈1, β1β2〉)⊗ r(〈β1〉) = 〈1,−γ2〉 ⊗ 〈γ3〉
= 〈γ3,−γ2γ3〉
= 〈1,−γ2〉

as well as

l(〈1, β1β2〉 ⊗ 〈β1〉) = l(〈β1, β2〉)
= l(〈1, β1β2〉)
= 〈1,−γ2〉

so indeed, l(〈1, β1β2〉)⊗ r(〈β1〉) = l(〈1, β1β2〉 ⊗ 〈β1〉).

Thus, we have shown that the module action is respected, so indeed, our candidate

ring fits into the short exact sequence as R[
√
β1β2]. �
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Chapter 5

Generalizing the Previous Findings

In this section, we generalize some of the results we found above. Let R =
∐n

i=1 Z. As

before, let βi be the element with −1 on the ith spot and 1 everywhere else.

5.1 The Case of n = 2

We begin by examining the easiest case: when n = 2. That is, we look at the abstract

Witt ring Z
∐

Z.

Lemma 5.1.1. We have the following isomorphism: Z
∐

Z ∼= Z[∆1].

Proof. Let Z[∆1] = Z · 〈1〉 ⊕ Z · 〈t〉, where t generates ∆1. Let β = (1,−1) ∈ Z
∐

Z. We

notice that we may write

Z
∐

Z = Z · 〈1〉 ⊕ Z〈β〉.

With that, we construct

φ : Z
∐

Z→ Z[∆1]

where 〈1〉 7→ 〈1〉 and 〈β〉 7→ 〈t〉. It is easy to see that φ is a ring isomorphism. �

From the above lemma, we notice that taking the square root of β in Z
∐

Z is anal-

ogous to taking the square root of t in Z[∆1]. From this, we get the following corollary:

24



Corollary 5.1.1. Let R = Z
∐

Z, and let β = (1,−1). Then R[
√
β] ∼= R.

Proof. We note that R ∼= Z[∆1], and we are taking the square root of β, which is

analogous to t in Z[∆1]. By Theorem 3.3.1, we are done. �

5.2 Taking the square root of β1

As before, we may write

R = Z · 〈1〉 ⊕ Z · 〈1,−β1〉 ⊕ · · · ⊕ Z · 〈1,−βn−1〉.

From this, we can write

R/R · 〈1,−β1〉 = Z · 〈1〉 ⊕ Z · 〈1,−β2〉 ⊕ · · · ⊕ Z · 〈1,−βn−1〉.

Now, let us look at ann(〈1,−β1〉). We note that

D〈1,−β1〉 = D〈1,−(−1, 1, · · · , 1)〉 = {(1,±1, · · · ,±1)}. As such, we see that ann(〈1,−β1〉)

is generated by 〈1,−(1,±1, · · · ,±1)〉. Furthermore, we can show that ann(〈1,−β1〉) =

Z · 〈1,−β2〉 ⊕ · · · ⊕ Z · 〈1,−βn〉.

In this section, we show that R[
√
β1] ∼=

∐2n−2
i=1 Z. The heuristics behind this is as

follows. When we take the square root of β1, all but one order extends in two ways,

resulting in 2n− 2 orders. Now, we notice that by taking the square root of β1, we lose a

square class generator. However as ann(〈1,−β1〉) has rank n− 1, we gain another n− 1,

thus giving us 2n− 2 square classes, which is also the numbers of orders we have.

Theorem 5.2.1. Let R =
∐n

i=1 Z, for n > 1. Then

R[
√
β1] ∼=

2n−2∐
i=1

Z.

Proof. Indeed, we have shown this to be true for n = 2, 3. Let us show this for n > 3.

Let us write
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2n−2∐
i=1

Z = Z · 〈1〉 ⊕ Z · 〈1, γ2γn〉 ⊕ · · · ⊕ Z · 〈1, γn−1γ2n−3〉

⊕ Z · 〈1,−γn〉 ⊕ · · · ⊕ Z · 〈1,−γ2n−2〉.

Since 〈1, γjγj+n−2〉 = 〈γj, γj+n−2〉, it can be readily verified that our direct sum is indeed

a direct sum.

First, we construct our map

r : R/R · 〈1,−β1〉
(

= Z · 〈1〉 ⊕ Z · 〈1,−β2〉 ⊕ · · · ⊕ Z · 〈1,−βn−1〉
)

→
2n−2∐
i=1

Z
(

= Z · 〈1〉 ⊕ Z · 〈1, γ2γn〉 ⊕ · · · ⊕ Z · 〈1, γn−1γ2n−3〉

⊕ Z · 〈1,−γn〉 ⊕ · · · ⊕ Z · 〈1,−γ2n−2〉
)

as follows: 〈1〉 7→ 〈1〉, and for j between 2 and n− 1, we send 〈βj〉 7→ 〈γjγj+n−2〉. Here, it

can be readily checked that this is an injective ring homomorphism. Here, the image is

Z · 〈1〉 ⊕ Z · 〈1, γ2γn〉 ⊕ · · · ⊕ Z · 〈1, γn−1γ2n−3〉.

Now, we construct

s :
2n−2∐
i=1

Z
(

= Z · 〈1〉 ⊕ Z · 〈1, γ2γn〉 ⊕ · · · ⊕ Z · 〈1, γn−1γ2n−3〉

⊕ Z · 〈1,−γn〉 ⊕ · · · ⊕ Z · 〈1,−γ2n−2〉
)

→ ann(〈1,−β1〉) (= Z · 〈1,−β2〉 ⊕ · · · ⊕ Z · 〈1,−βn〉)

Here, we send 〈1〉 7→ 0, 〈1, γjγj+n−2〉 7→ 0 for all 2 ≤ j ≤ n − 1, and for j ≥ n, we have

〈1,−γj〉 7→ 〈1,−βj−n+2〉 (e.g. 〈1,−γn〉 7→ 〈1,−β2〉). By construction, it is clear that

0→ R/R · 〈1,−β1〉 →
2n−2∐
i=1

Z→ ann(〈1,−β1〉)→ 0

is exact. So, we have the corresponding lift 〈1,−βj〉 7→ 〈1,−γj+n−2〉.

Let us now show that the module action is respected. It is clear that r(〈1〉) ⊗

l(〈1,−βj〉) = l(〈1〉 ⊗ 〈1,−βj〉). To see the rest of the generators behave as expected,

we first show that for all (suitable) j, we have r(〈βj〉)⊗ l(〈1,−βj〉) = l(〈βj〉 ⊗ 〈1,−βj〉):
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r(〈βj〉)⊗ l(〈1,−βj〉) = 〈γjγj+n−2〉 ⊗ 〈1,−γj+n−2〉
= 〈γjγj+n−2,−γj〉
= −〈1,−γj+n−2〉

l(〈βj〉 ⊗ 〈1,−βj〉) = l(〈βj,−1〉)
= l(−〈1,−βj〉)
= −l(〈1,−βj〉)
= −〈1,−γj+n−2〉

So indeed, we have r(〈βj〉)⊗ l(〈1,−βj〉) = l(〈βj〉 ⊗ 〈1,−βj〉) for all (suitable) j.

Now, for i 6= j, let us show r(〈βi〉)⊗ l(〈1,−βj〉) = l(〈βi〉 ⊗ 〈1,−βj〉):

r(〈βi〉)⊗ l(〈1,−βj〉) = 〈γiγi+n−2〉 ⊗ 〈1,−γj+n−2〉
= 〈γiγi+n−2,−γiγi+n−2γj+n−2〉
= 〈1,−γj+n−2〉

l(〈βi〉 ⊗ 〈1,−βj〉) = l(〈βi,−βiβj〉)
= l(〈1,−βj〉)
= l(〈1,−βj〉)
= 〈1,−γj+n−2〉

So indeed, our module action is respected. �

5.3 Taking the square root of β1 · · · βn−1(= −βn)

We note that β1 · · · βn−1 = −βn = (−1,−1, · · · ,−1, 1). Heuristically, taking the square

root would extend one of the orders to two orders, while the rest do not extend. We note

that quotienting by 〈1, β1〉 would eliminate one of the square class generators. However,

we also note that ann(〈1, βn〉) = Z·〈1,−βn〉, sinceD(〈1, βn〉) = D(〈1, (1, 1, · · · , 1,−1)〉) =

(1, 1, 1 · · · , 1,±1). Thus, ann(〈1, βn〉) = Z ·〈1, βn〉. This also means that we gain another

square class, and so, we have n generators for our square class. Thus, we expect to have

the following theorem:
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Theorem 5.3.1. Let R =
∐n

i=1 Z, for n > 1. Then

R[
√
−βn] ∼= Z

∐
Z
∐(

n∐
i=3

Z/4Z

)
.

Proof. Let us write R = Z · 〈1〉 ⊕ Z · 〈β1〉 ⊕ · · · ⊕ Z · 〈βn−1〉. Since R · 〈1, βn〉 gives us

Z · 〈1, βn〉 + Z · 〈βn, β1βn〉 + · · · + Z · 〈βn, βn−1βn〉, which tells us that in R/R · 〈1, βn〉,

we have 〈βn〉 = −〈1〉. This also means 〈β1β2 · · · βn−1〉 = 〈1〉. We also see that for any

0 < i < n,

〈1,−βi〉 ⊥ 〈1,−βi〉 = 〈1,−βi, 1,−βi〉
= 〈1,−βi,−βn,−βi〉
= 〈−βi,−βiβn〉
= 〈−βi〉 ⊗ 〈1, βn〉
= 0

which tells us that each 〈1,−βi〉 in R/R · 〈1, βn〉 has 2-torsion. Moreover, we note that

〈1,−β1〉 ⊥ 〈1,−β2〉 ⊥ · · · ⊥ 〈1,−β[n− 1]〉 = 〈1,−β1β2 · · · βn−1〉
= 〈1, βn〉
= 0

which tells us that 〈1,−β1〉 can be written as a sum of the other 〈1,−βi〉. So, we can

write

R/R · 〈1, βn〉 = Z〈1〉 ⊕ (Z/2Z)〈1,−β2〉 ⊕ · · · ⊕ (Z/2Z)〈1,−βn−1〉.

Let us write Z
∐

Z
∐(

n∐
i=3

Z/4Z

)
= Z · 〈1〉 ⊕ Z · 〈1,−γ1〉 ⊕ (Z/2Z) · 〈1,−γ2〉 ⊕ · · · ⊕ (Z/2Z) · 〈1,−γn−1〉.

We observe that 〈1,−γi〉 ⊥ 〈1,−γi〉 = 0 for i ≥ 2. With this in mind, we construct

our map

r : R/R · 〈1, β1〉 (= Z〈1〉 ⊕ (Z/2Z)〈1,−β2〉 ⊕ · · · ⊕ (Z/2Z)〈1,−βn−1〉)
→ Z · 〈1〉 ⊕ Z · 〈1,−γ1〉 ⊕ (Z/2Z) · 〈1,−γ2〉 ⊕ · · · ⊕ (Z/2Z) · 〈1,−γn−1〉
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by sending 〈1〉 7→ 〈1〉 and for 1 < i < n, we send 〈βi〉 7→ 〈γi〉. Here, the image of r is

Z · 〈1〉 ⊕ (Z/2Z) · 〈1,−γ2〉 ⊕ · · · ⊕ (Z/2Z) · 〈1,−γn−1〉.

We define

s : Z · 〈1〉 ⊕ Z · 〈1,−γ1〉 ⊕ (Z/2Z) · 〈1,−γ2〉 ⊕ · · · ⊕ (Z/2Z) · 〈1,−γn−1〉
→ ann(〈1, βn〉) (= Z · 〈1,−βn〉)

by 〈1〉 7→ 0, 〈1,−γi〉 7→ 0 for i 6= 1, and 〈1,−γ1〉 7→ 〈1,−βn〉.

It is clear by construction that

0→ R/R · 〈1, βn〉 → Z
∐

Z
∐(

n∐
i=3

Z/4Z

)
→ ann(〈1, βn〉)→ 0

is exact, with the corresponding lift l : ann(〈1, βn〉) → Z · 〈1〉 ⊕ Z · 〈1,−γ1〉 ⊕ (Z/2Z) ·

〈1,−γ2〉 ⊕ · · · ⊕ (Z/2Z) · 〈1,−γn−1〉 given by 〈1,−βn〉 7→ 〈1,−γ1〉.

Let us now show that the module action is respected. Clearly, we have that r(〈1〉)⊗

l(〈1,−γn〉) = l(r(〈1〉) ⊗ 〈1,−γn〉). Let us show that r(〈βi〉) ⊗ l(〈1,−γn〉) = l(〈βi〉 ⊗

〈1,−γn〉), for 1 < i < n. To see this, we observe

r(〈βi〉)⊗ l(〈1,−βn〉) = 〈γi〉 ⊗ 〈1,−γ1〉
= 〈γi,−γ1γi〉
= 〈1,−γ1〉

l(〈βi〉 ⊗ 〈1,−βn〉) = l(〈βi,−βiβn〉)
= l(〈1,−βn〉)
= 〈1,−γ1〉

So indeed, r(〈βi〉) ⊗ l(〈1,−γn〉) = l(〈βi〉 ⊗ 〈1,−γn〉). Since 〈1〉 and 〈1,−βi〉 for 1 <

i < n are the generators for R/R · 〈1, βn〉, the above computation shows that the module

action is preserved. �

5.4 Taking the square root of β1 · · · βk, for k < n

Taking inspiration from our previous cases, we prove the following theorem:

29



Theorem 5.4.1. Let R =
∐n

i=1 Z, where n ≥ 2. For k < n, we have

R[
√
β1β2 · · · βk−1βk] ∼=

2(n−k)∐
i=1

Z

∐ 2n−(k+1)∐
i=2(n−k)+1

Z/4Z

 .

Proof. First, let us look at R/R · 〈1,−β1 · · · βk〉. We note that 〈1〉 = 〈β1 · · · βk〉 in

R/R · 〈1,−β1 · · · βk〉. This means that 〈βk+1 · · · βn〉 = −1, and so, for any 1 ≤ i ≤ k, we

see that

〈1,−βi〉 ⊥ 〈1,−βi〉 = 〈1,−βi, 1,−βi〉
= 〈1,−βi,−β1 · · · βi−1βi+1 · · · βk, 1〉
= 〈1,−βi,−β1 · · · βi−1βi+1 · · · βk, β1 · · · βk〉
= 0

Thus, we see that 〈1,−βi〉, for i ≤ k, has 2-torsion.

We also note that

〈1,−β1〉 ⊥ · · · ⊥ 〈1,−βk〉 = 〈1,−β1 · · · βk〉
= 0

Since we may write R = Z · 〈1〉 ⊕ Z · 〈1,−β1〉 ⊕ · · · ⊕ Z · 〈1,−βn−1〉, and we only need

k − 1 of our 〈1,−βi〉, for i ≤ k, we can represent

R/R · 〈1,−β1 · · · βk〉 = Z · 〈1〉 ⊕ (Z/2Z) · 〈1,−β2〉 ⊕ · · · ⊕ (Z/2Z) · 〈1,−βk〉
⊕ Z · 〈1,−βk+1〉 ⊕ · · · ⊕ Z · 〈1,−βn−1〉.

Now, we see that D(〈1,−β1 · · · βk) = D(〈1, (1, · · · , 1,−1 · · · ,−1)〉)

= (1, · · · , 1,±1, · · · ,±1), where the first k are 1 and the last n − k is ±1. This means

ann(〈1,−β1 · · · βk〉) can be additively generated by 〈1,−βi〉, for k + 1 ≤ i ≤ n, and so,

we may write

ann(〈1,−β1 · · · βk〉) = Z · · · 〈1,−βk+1〉 ⊕ · · · ⊕ Z · 〈1,−βn〉.

For our candidate ring, let us write
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2(n−k)∐
i=1

Z

∐ 2n−(k+1)∐
i=2(n−k)+1

Z/4Z


= Z · 〈1〉 ⊕ Z · 〈1, γ2γn−k+1〉 ⊕ · · · ⊕ Z · 〈1, γn−kγ2(n−k)−1〉
⊕ Z · 〈1,−γn−k+1〉 ⊕ · · · ⊕ Z · 〈1,−γ2n−2k〉
⊕ (Z/2Z) · 〈1,−γ2(n−k)+1 ⊕ · · · ⊕ (Z/2Z) · 〈1,−γ2n−(k+1)〉.

Indeed, we see that this is a direct sum, since 〈1, γjγj+n−k−1〉 = 〈γj, γj+n−k−1〉.

We now construct

r : R/R · 〈1,−β1 · · · βk〉 →

2(n−k)∐
i=1

Z

∐ 2n−(k+1)∐
i=2(n−k)+1

Z/4Z


as follows: We send 〈1〉 7→ 〈1〉, for 2 ≤ i ≤ k, we send 〈βi〉 7→ 〈γ2(n−k)−1+i〉, and

for i ≥ k + 1, we send 〈βi〉 7→ 〈γi−(k−1)γi+n−2k〉. By noting that for i 6= j, we have

〈1,−βi〉 ⊥ 〈1,−βj〉 = 〈1,−βiβj〉 (similarly for the corresponding γ’s in the codomain),

it is readily checked that this map is a ring homomorphism, and that the image of r is

Z · 〈1〉 ⊕ Z · 〈1, γ2γn−k+1〉 ⊕ · · · ⊕ Z · 〈1, γn−kγ2(n−k)−1〉

⊕ (Z/2Z) · 〈1,−γ2(n−k)+1 ⊕ · · · ⊕ (Z/2Z) · 〈1,−γ2n−(k+1)〉.

Let us now construct

s :

2(n−k)∐
i=1

Z

∐ 2n−(k+1)∐
i=2(n−k)+1

Z/4Z

→ ann(〈1,−β1 · · · βk〉)

as follows: We send 〈1〉 7→ 0, 〈1, γiγi+n−k−1〉 7→ 0 for 2 ≤ j ≤ n − k, and 〈1,−γk〉 7→

〈1,−βj−(n−2k)〉 for j ≥ n− k + 1.

By our construction, it is easy to see that

0→ R/R · 〈1,−β1 · · · βk〉
r→

2(n−k)∐
i=1

Z

∐ 2n−(k+1)∐
i=2(n−k)+1

Z/4Z


s→ ann(〈1,−β1 · · · βk〉)→ 0

is exact. Here, the corresponding lift is give by l : 〈1,−βj〉 7→ 〈1,−γj+(n−2k)〉.

What is left is to show that the module actions is respected. That is, we need to show
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that r(〈βi〉)⊗ l(〈1,−βj〉) = l(〈βi〉 ⊗ 〈1,−βj〉), for all i, j.

Let us first consider the case when i ≤ k. Since j ≥ k + 1, we see i 6= j. In this case,

we see that

r(〈βi〉)⊗ l(〈1,−βj〉) = 〈1,−γj+n−2k〉 ⊗ 〈γ2(n−k)+1+i〉
= 〈γ2(n−k)+1+i,−γ2(n−k)+1+iγj+n−2k〉
= 〈1,−γj+n−2k〉.

l(〈1,−βj〉 ⊗ 〈βi〉) = l(〈βi,−βiβj〉)
= l(〈1,−βj〉
= 〈1,−γj+n−2k〉

so indeed, when i ≤ k, we have r(〈βi〉)⊗ l(〈1,−βj〉) = l(〈βi〉 ⊗ 〈1,−βj〉).

Now, we consider the case when i ≥ k + 1, and i 6= j. In this case, we see that

r(〈βi〉)⊗ l(〈1,−βj〉) = 〈1,−γj+n−2k〉 ⊗ 〈γi−(k−1)γi+n−2k〉
= 〈γi−(k−1)γi+n−2k,−γj+n−2kγi−(k−1)γi+n−2k〉
= 〈1,−γj+n−2k〉

l(〈1,−βj〉 ⊗ 〈βi〉) = l(〈βi,−βiβj〉)
= l(〈1,−βj〉
= 〈1,−γj+n−2k〉

so indeed, when i ≥ k + 1 and i 6= j, we have r(〈βi〉)⊗ l(〈1,−βj〉) = l(〈βi〉 ⊗ 〈1,−βj〉).

Now, it is left to show that r(〈βj〉)⊗ l(〈1,−βj〉) = l(〈βj〉 ⊗ 〈1,−βj〉).

Here, we see that

r(〈βj〉)⊗ l(〈1,−βj〉) = 〈1,−γj+n−2k〉 ⊗ 〈γj−(k−1)γj+n−2k〉
= 〈γj−(k−1)γj+n−2k,−γj−(k−1)〉
= −〈1,−γj+n−2k〉

l(〈1,−βj〉 ⊗ 〈βj〉) = l(〈βj,−1〉)
= −l(〈1,−βi〉)
= −〈1,−γj+n−2k〉

This indeed shows that r(〈βi〉) ⊗ l(〈1,−βj〉) = l(〈βi〉 ⊗ 〈1,−βj〉), for all i, j, so our

module action is respected. �
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5.5 Taking the square root of β1 · · · βn (= −1)

In this section, we finally consider the case when we take the square root of β1 · · · βn,

which is −1.

Theorem 5.5.1. Given R =
∐n

i=1 Z, we have

R[
√
−1] =

n−1∐
i=1

Z/2Z[∆1]

Proof. First, we note that ann(〈1,−β1 · · · βn〉) = ann(〈1, 1〉) = 0. To see this, we note

that D(〈1, 1〉) = (1, 1, · · · , 1), which means ann(〈1, 1〉) is generated by 〈1,−1〉, the hy-

perbolic form. This tells us that R[
√
−1] ∼= R/R · 〈1, 1〉.

So, let us look at R/R · 〈1, 1〉. First, we see that in this ring, 〈1〉 = −〈1〉. From this,

we see that R/R · 〈1, 1〉 = (Z/2Z) · 〈1〉 ⊕ (Z/2Z) · 〈1,−β1〉 ⊕ · · · ⊕ (Z/2Z) · 〈1,−βn−1〉.

We claim that this ring is isomorphic to
∐n−1

i=1 Z/2Z[∆1].

Looking at
∐n−1

i=1 Z/2Z[∆1], we note the elements have entries that are entirely 0 and

1 + ∆ or 1 and ∆. Denote γi as the element with 1’s everywhere except for ∆ on the ith

spot. We note that we can write

n−1∐
i=1

Z/2Z[∆1] ∼= (Z/2Z) · 〈1〉 ⊕ (Z/2Z) · 〈1,−γ1〉 ⊕ · · · ⊕ (Z/2Z) · 〈1,−γn−1〉.

So we define an isomorphism φ : R/R · 〈1, 1〉 →
∐n−1

i=1 Z/2Z[∆1] where 〈1〉 7→ 〈1〉, and

〈1,−βi〉 7→ 〈1,−γi〉. It is clear to see that this extends to a bijection preserving addition.

It is also easy to see that this is multiplication is preserved, in that 〈1,−βi〉⊗〈1,−βj〉 = 0

for i 6= j, and similarly, 〈1,−γi〉 ⊗ 〈1,−γj〉 = 0 for i 6= j. Thus, we see that here,

R[
√
−1] =

∐n−1
i=1 Z/2Z[∆1].

�
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5.6 One Ring (Isomorphism) to Rule Them All!

In this section, we refer to the following theorem from Marshall’s text to unify the work

we have above.

Theorem 5.6.1. If R is an abstract Witt ring away from characteristic 2, then

R
∐

Z/4Z ∼= R
∐

Z[∆1].

This ring isomorphism gives us the following unifying corollary:

Corollary 5.6.1. Let R =
∐n

i=1 Z, where n ≥ 2. For k ≤ n, we have

R[
√
β1β2 · · · βk−1βk] ∼=

2(n−k)∐
i=1

Z

∐ 2n−(k+1)∐
i=2(n−k)+1

Z/2Z[∆1]

 .
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Chapter 6

Rings of the form R1
∐
R2

Given abstract Witt rings R1 and R2, with corresponding quadratic extensions R1[
√
α1]

and R2[
√
α2], we show that

(R1

∐
R2)[

√
(α1, α2)] = R1[

√
α1]
∐

R2[
√
α2]
∐

R̂

, where either R̂ = Z/2Z[∆1], with ∆1 generated by ∆, or R̂ = Z/4Z.

6.1 The general case of R1 =
∐n1

i=1 Z and R2 =
∐n2

j=1 Z

We first show this to be true for the case where R1 and R2 are fiber products of Z.

Theorem 6.1.1. Let R1 =
∐n1

i=1 Z and R2 =
∐n2

j=1 Z, where βk1 ∈ R1 and βk2 ∈ R2.

Then

R1

∐
R2[
√

(βk1 , βk2)] ∼= R1[
√
βk1 ]

∐
R2[
√
βk2 ]

∐
Z/2Z[∆1].

Proof. Given βk1 ∈ R1 and βk2 ∈ R2, we have shown that the

R1[
√
βk1 ]
∼=

2(n1−k1)∐
i=1

Z

∐ 2n1−(k1+1)∐
i=2(n1−k1)+1

Z/2Z[∆1]
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and

R2[
√
βk2 ]
∼=

2(n2−k2)∐
i=1

Z

∐ 2n2−(k2+1)∐
i=2(n2−k2)+1

Z/2Z[∆1]

 .

Now, we note that R1

∐
R2 =

∐n1+n2

i=1 Z, and taking the square root of (βk1 , βk2) will

result in a ring isomorphic to what would be obtained by taking the square root of βk1+k2 .

So here, we see that

(R1

∐
R2)[

√
(βk1 , βk2)]

∼=

2(n1+n2−k1−k2)∐
i=1

Z

∐ 2n1+n2−(k1+k2+1)∐
i=2(n1+n2−k1−k2)+1

Z/2Z[∆1]


Here, it can be readily checked that

(R1

∐
R2)[

√
(α1, α2)] = R1[

√
α1]
∐

R2[
√
α2]
∐

Z/2Z[∆1].

�

6.2 The case of Z[∆2]
∐

Z[∆2]

We begin by exploring the basic case of when both R1 = R2 = Z[∆2]. This will give us

intuition when neither R1 or R2 are fiber products of Z. We recall that Z[∆1] ∼= Z
∐

Z,

which is why we adjoin ∆2.

We recall that from Corollary 3.3.1 that Z[∆2][
√
δ1] ∼= Z[∆2].

Theorem 6.2.1. Let R = Z[∆2]
∐

Z[∆2], where ∆2 is the Klein-4 group (generated by

δ1 and δ2). Then

R[
√

[δ1, δ1]] ∼= R[
√
δ1]
∐

R[
√
δ1]
∐

Z/2Z[∆1].

Proof. First, we note that R has, as a Z-basis, {[1, 1] = 1, [1,−1] = β, [δ1, 1] = δ1, [δ2, 1] =

δ2, [δ1δ2, 1] = δ1δ2, [1, δ1] = δ′1, [1, δ2] = δ′2, [1, δ1δ2] = δ′1δ
′
2}.

Let us now examine R/R · 〈1,−β1β
′
1〉. We notice that in this quotient, we have
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〈1〉 = 〈β1β′1〉, which tells us that 〈β〉 = 〈β′1〉. Furthermore, we notice that 〈β1β2〉 =

[β1β2, 1] = [β2, β1] = [β2, 1] + [1, β1] − [1, 1] = 〈β2, β′1,−1〉. We can similarly show that

〈δ′1δ′2〉 = 〈δ1, δ′2,−1〉. Furthermore, we note that

〈δ1〉+ 〈δ1〉 − 〈1〉 = [δ1, 1] + [δ1, 1]− [1, 1]

= [δ1, 1] + [1, δ1]− [1, 1]

= [δ1, δ1]

= [1, 1]

= 〈1〉

which tells us that 〈1,−δ1〉 has 2-torsion in our quotient.

From all of this, we may write

R/R · 〈1,−δ1δ1〉 = Z · 〈1〉 ⊕ Z · 〈1,−β〉 ⊕ Z · 〈1,−δ2〉 ⊕ Z · 〈1,−δ′2〉 ⊕ (Z/2Z) · 〈1,−β1〉.

Let us now examine ann(〈1,−δ1δ
′
1〉). So, we first look at D(〈1,−δ1δ

′
1〉). We notice

that

D(〈1,−δ1δ
′
1〉) = D(〈1, [−δ1, δ1]〉) = {[−δ1, 1], [1,−δ1], [1, 1], [−δ1,−δ1]},

which tells us that ann(〈1,−δ1δ
′
1〉) is generated by (1,−1) (which is hyperbolic),

〈1,−[−δ1, 1]〉 = 〈1, βδ1〉, 〈1,−[1,−δ1]〉 = 〈1,−βδ′1〉, and

〈1,−[−δ1,−δ1]〉 = 〈1, δ1δ
′
1〉. We note that 〈1, βδ1〉 ⊥ 〈1,−βδ′1〉 = [1 + δ1, 0] + [0, 1 +

δ1] = [1 + δ1, 1 + δ1] = 〈1, δ1δ
′
1〉, which tells us that as an ideal, ann(〈1,−δ1δ

′
1〉) =

(〈1, βδ1〉, 〈1,−βδ′1〉).

It can be readily checked that

ann(〈1,−δ1δ
′
1) = Z · 〈1, βδ1〉 ⊕ Z · 〈δ2, βδ1δ2〉 ⊕ Z · 〈1,−βδ′1〉 ⊕ Z · 〈δ′2,−βδ′1δ′2〉.

Furthermore, we note that δ′1, δ
′
2, β, δ1 fixes 〈1, βδ1〉 and 〈δ2, βδ1δ2〉, while δ2 swaps them.

Similarly, δ1, δ2,−β, δ′1 fixes 〈1,−βδ′1〉 and 〈δ′2,−βδ′1δ′2〉, while δ′2 swaps them.

We note that Z[∆2][
√
β1] ∼= Z[∆2], in which case, our quadratic extension should be
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R′ = Z[∆2]
∐

Z[∆2]
∐

Z/2Z[∆1]. Here, we denote γ1, γ2 as the generators for each Z[∆2].

R’ can be additively generated by 1 = [1, 1, 1], β = [1,−1, 1], ε = [1, 1,∆], γ1 = [γ1, 1, 1],

γ2 = [γ2, 1, 1], γ1γ2 = [γ1γ2, 1, 1], γ′1 = [1, γ1, 1], γ′2 = [1, γ2, 1], and γ′1γ
′
2 = [1, γ1γ2, 1] as a

basis over Z. Indeed, it can be readily checked that

R′ = Z · 〈1〉 ⊕ Z · 〈1,−β〉 ⊕ Z · 〈1,−γ2〉 ⊕ Z · 〈1,−γ′2〉 ⊕ (Z/2Z) · 〈1,−ε〉
⊕ Z〈̇1, βγ1〉 ⊕ Z · 〈1,−βγ′1〉 ⊕ Z · 〈γ2, βγ1γ2〉 ⊕ Z · 〈γ′2,−βγ′1γ′2〉.

Let us now construct r : R/R · 〈1,−δ1δ
′
1〉 → R′ as follows: 〈1〉 7→ 〈1〉,

〈β〉 7→ 〈β〉, 〈δ2〉 7→ 〈γ2〉, 〈δ′2〉 7→ 〈γ′2〉, 〈δ1〉 7→ 〈ε〉. It is readily checked that this map

is injective, multiplication is preserved (thus, it is a ring homomorphism), and that

furthermore, the image is

Z · 〈1〉 ⊕ Z · 〈1,−β〉 ⊕ Z · 〈1,−γ2〉 ⊕ Z · 〈1,−γ′2〉 ⊕ (Z/2Z) · 〈1,−ε〉.

We now construct s : R′ → ann(〈1,−δ1δ
′
1) as follows: 〈1, βγ1〉 7→ 〈1, βδ1〉, 〈1,−βγ′1〉 7→

〈1,−βδ′1〉, 〈γ2, βγ1γ2〉 7→ 〈δ2, βδ1δ2〉, 〈γ′2,−βγ′1γ′2〉 7→ 〈δ′2,−βδ′1δ′2〉,

while 〈1〉, 〈1,−β〉, 〈1,−γ2〉, 〈1,−γ′2〉, 〈1,−ε〉 all go to 0. It is clear that this map is onto.

Thus, by construction, we see that

0→ R/R · 〈1,−δ1δ
′
1〉 → R′ → ann(〈1,−δ1δ

′
1〉)→ 0

is exact. Here, the corresponding lift is l : ann(〈1,−δ1δ
′
1〉) → R′ is given by 〈1, βδ1〉 7→

〈1, βγ1〉, 〈1,−βδ′1〉 7→ 〈1,−βγ′1〉, 〈δ2, βδ1δ2〉 7→ 〈γ2, βγ1γ2〉, 〈δ′2,−βδ′1δ′2〉 7→ 〈γ′2,−βγ′1γ′2〉.

What is left is to show that the module action is preserved.

First, we show l(〈δ1〉 ⊗ 〈1, βδ1〉) = r(〈δ1〉)⊗ l(〈1, βδ1〉). To see this, we note that

l(〈δ1〉 ⊗ 〈1, βδ1〉) = l(〈1, βδ1〉)
= 〈1, βγ1〉

r(〈δ1〉)⊗ l(〈1, βδ1〉) = 〈ε〉 ⊗ 〈1, βγ1〉
= 〈1, βγ1〉

so indeed, equality is shown.
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We now show l(〈δ2〉 ⊗ 〈1, βδ1〉) = r(〈δ2〉)⊗ l(〈1, βδ1〉). To see this, we note that

l(〈δ2〉 ⊗ 〈1, βδ1〉) = l(〈δ2, βδ1δ2〉)
= 〈γ2, βγ1γ2〉

r(〈δ2〉)⊗ l(〈1, βδ1〉) = 〈γ2〉 ⊗ 〈1, βγ1〉
= 〈γ2, βγ1γ2〉

so indeed, equality is shown.

Let us finally show l(〈β〉 ⊗ 〈1, βδ1〉) = r(〈δ1〉)⊗ l(〈1, βδ1〉). To see this, we note that

l(〈β〉 ⊗ 〈1, βδ1〉) = l(〈1, βδ1〉)
= 〈1, βγ1〉

r(〈δ1〉)⊗ l(〈1, βδ1〉) = 〈β〉 ⊗ 〈1, βγ1〉
= 〈1, βγ1〉

so indeed, equality is shown.

Thus, we see the action on 〈1, βγ1〉 is preserved. We can similarly show that the

action 〈1,−βγ′1〉, 〈γ2, βγ1γ2〉, and 〈γ′2,−βγ′1γ′2〉 are preserved. �

6.3 The general case of Z[∆n]
∐

Z[∆m], where n,m > 1

Let us now consider when R1 = Z[∆n] and R2 = Z[∆m], where n,m > 1, and ∆k is the

torsion-2 group with k generators. Indeed, we can focus on when n,m > 1 as Z[∆1] ∼=

Z
∐

Z. Let δ1, · · · , δn generate ∆n and δ′1, · · · , δm’ generate ∆m. Let R = R1

∐
R2.

We recall again that by Corollary 3.3.1, we have R1[
√
δ1] ∼= R1 and R2[

√
δ′1] ∼= R2.

Theorem 6.3.1. Let R1 = Z[∆n] and R2 = Z[∆m], where n,m > 1, and ∆k is as above.

Let R = R1

∐
R2. Then

R[
√

(β1, β′1)] ∼= R1[
√
β1]
∐

R2[
√
β′1]
∐

Z/2Z[∆1].
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Proof. We note that R can be expressed with a Z-basis {1 = [1, 1], β = [1,−1], δi1 · · · δij =

[δi1 · · · δij , 1] for 1 ≤ i1 < · · · < ıj ≤ n, and δ′i1 · · · δ
′
ik

= [1, δ′i1 · · · δ
′
ik

] for 1 ≤ i1 < · · · <

ik ≤ m}. Thus, we see that R has rank 2n + 2m, and can be represented as

R = Z · 〈1〉 ⊕ Z · 〈1,−β〉 ⊕
⊕

1≤i1<···<ij≤n

Z · 〈1,−δi1 · · · δij〉

⊕
⊕

1≤i1<···<ik≤m

Z · 〈1,−δ′i1 · · · δ
′
ik
〉.

Let us now look at taking the square root of (δ1, δ
′
1). So, let us examine R/R ·

〈1,−δ1δ
′
1〉. As before, we have 〈δ1δ′1〉 = 〈1〉 in our quotient, and so, 〈δ1〉 = 〈δ′1〉. As

before, we can also show that 〈1,−δ1〉 has 2-torsion, and that given 1 < i1 < · · · < ij ≤ n,

we have 〈δ1δi1 · · · δij〉 = [δ1δi1 · · · δij , 1] = [δi1 · · · δij , δ′1] = 〈δi1 · · · δij〉 ⊥ 〈δ′1〉 − 〈1〉, which

means 〈δ1δi1 · · · δij〉 can be represented as a linear combination of the other generators.

The same can be said about 〈δ′1δ′i1 · · · δ
′
ij
〉, in which case, we can write

R/R · 〈1,−δ1δ
′
1〉 = Z · 〈1〉 ⊕ Z · 〈1,−β〉 ⊕

⊕
1<i1<···<ij≤n

Z · 〈1,−δi1 · · · δij〉

⊕
⊕

1<i1<···<ik≤m

Z · 〈1,−δ′i1 · · · δ
′
ik
〉 ⊕ (Z/2Z) · 〈1,−δ1〉.

Let us now examine ann(〈1,−δ1δ
′
1〉). As before, we can show ann(〈1,−δ1δ

′
1〉) =

(〈1, βδ1〉, 〈1,−βδ′1〉). In fact, we can also write

ann(〈1,−δ1δ
′
1〉) = Z · 〈1, βδ1〉 ⊕

⊕
1<i1<···<ij≤n

〈δi1 · · · δij , βδ1δi1 · · · δij〉

⊕ Z · 〈1,−βδ′1〉 ⊕
⊕

1<i1<···<ik≤m

〈δ′i1 · · · δ
′
ij
,−βδ′1δi1 · · · δ′ik〉.

As Z[∆k][
√
β1] ∼= Z[∆k], our quadratic extension should be

Z[∆n]
∐

Z[∆m]
∐

Z/2Z[∆1]. Again, we will use γi and γ′i instead of δi and δ′i to denote our

generators for ∆n and ∆m R′ can be additively generated by 1 = [1, 1, 1], β = [1,−1, 1],

ε = [1, 1,∆], γi1 · · · γij = [γi1 · · · γij , 1, 1] for 1 ≤ i1 < · · · < ij ≤ n, and γ′i1 · · · γ
′
ik

=

[1, γ′i1 · · · γ
′
ik
, 1] for 1 ≤ i1 < · · · < ik ≤ m. In fact, we can write
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R′ = Z · 〈1〉 ⊕ Z · 〈1,−β〉

⊕
⊕

1<i1<···<ij≤n

Z · 〈1,−γi1 · · · γij〉 ⊕
⊕

1<i1<···<ik≤m

Z · 〈1,−γ′i1 · · · γ
′
ik
〉

⊕ Z · 〈1, βγ1〉 ⊕
⊕

1<i1<···<ij≤n

〈γi1 · · · γij , βγ1γi1 · · · γij〉

⊕ Z · 〈1,−βγ′1〉 ⊕
⊕

1<i1<···<ik≤m

〈γ′i1 · · · γ
′
ij
,−βγ′1γi1 · · · γ′ik〉

⊕ (Z/2Z) · 〈1,−ε〉.

We now construct r : R/R · 〈1,−δ1δ
′
1〉 → R′ as follows:

• 〈1〉 7→ 〈1〉

• 〈1,−β〉 7→ 〈1,−β〉

• 〈1,−δi1 · · · δij〉 7→ 〈1,−γi1 · · · γij〉 for 1 < i1 < · · · < ij ≤ n

• 〈1,−δ′i1 · · · δ
′
ik
〉 7→ 〈1,−γ′i1 · · · γ

′
ik
〉 for 1 < i1 < · · · < ik ≤ m

• and 〈1,−γ1〉 7→ 〈1,−ε〉.

It is readily checked that this map is injective, multiplication is preserved, with the image

Z · 〈1〉 ⊕ Z · 〈1,−β〉 ⊕
⊕

1<i1<···<ij≤n

Z · 〈1,−γi1 · · · γij〉

⊕
⊕

1<i1<···<ik≤m

Z · 〈1,−γ′i1 · · · γ
′
ik
〉 ⊕ (Z/2Z) · 〈1,−ε〉.

We now construct s : R′ → ann(〈1,−δ1δ
′
1〉) defined as follows:

• 〈1, βγ1〉 7→ 〈1, βδ1〉

• 〈γi1 · · · γij , βγ1γi1 · · · γij〉 7→ 〈δi1 · · · δij , βδ1δi1 · · · δij〉 for 1 < i1 < · · · < ij ≤ n

• 〈1,−βγ′1〉 7→ 〈1,−βδ′1〉

• 〈γ′i1 · · · γ
′
ij
,−βγ′1γi1 · · · γ′ik〉 7→ 〈δ

′
i1
· · · δ′ij ,−βδ

′
1δi1 · · · δ′ik〉 for 1 < i1 < · · · < ik ≤ m

• 〈1〉, 〈1,−β〉, 〈1,−γi1 · · · γij〉 7→ 0 for 1 < i1 < · · · < ij ≤ n
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• 〈1,−γi1 · · · γik〉 7→ 0 for 1 < i1 < · · · < ik ≤ m

It is clear that this map is onto.

By construction, we see that 0 → R/R · 〈1,−δ1δ
′
1〉 → R′ → ann(〈1,−δ1δ

′
1〉) → 0

is exact. Here, the corresponding lift is l : ann(〈1,−δ1δ
′
1〉) → R′ given by 〈1, βδ1〉 7→

〈1, βγ1〉, 〈δi1 · · · δij , βδ1δi1 · · · δij〉 7→ 〈γi1 · · · γij , βγ1γi1 · · · γij〉 for 1 < i1 < · · · < ij ≤ n,

〈1,−βδ′1〉 7→ 〈1,−βγ′1〉, and 〈δ′i1 · · · δ
′
ij
,−βδ′1δi1 · · · δ′ik〉 7→ 〈γ

′
i1
· · · γ′ij ,−βγ

′
1γi1 · · · γ′ik〉 for

1 < i1 < · · · < ik ≤ m. What is left is to show that the module action is preserved.

First, we show l(〈δ1〉 ⊗ 〈1, βδ1〉) = r(〈δ1〉)⊗ l(〈1, βδ1〉). To see this, we note that

l(〈δ1〉 ⊗ 〈1, βδ1〉) = l(〈1, βδ1〉)
= 〈1, βγ1〉

r(〈δ1〉)⊗ l(〈1, βδ1〉) = 〈ε〉 ⊗ 〈1, βγ1〉
= 〈1, βγ1〉

so indeed, equality is shown.

We now show l(〈δk〉 ⊗ 〈1, βδ1〉) = r(〈δk〉)⊗ l(〈1, βδ1〉) for k > 1. To see this, we note

that

l(〈δk〉 ⊗ 〈1, βδ1〉) = l(〈δk, βδ1δk〉)
= 〈γk, βγ1γk〉

r(〈δk〉)⊗ l(〈1, βδ1〉) = 〈γk〉 ⊗ 〈1, βγ1〉
= 〈γk, βγ1γk〉

so indeed, equality is shown.

Let us finally show l(〈β〉 ⊗ 〈1, βδ1〉) = r(〈δ1〉)⊗ l(〈1, βδ1〉). To see this, we note that

l(〈β〉 ⊗ 〈1, βδ1〉) = l(〈1, βδ1〉)
= 〈1, βγ1〉

r(〈δ1〉)⊗ l(〈1, βδ1〉) = 〈β〉 ⊗ 〈1, βγ1〉
= 〈1, βγ1〉

so indeed, equality is shown.
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Thus, we see the action on 〈1, βγ1〉 is preserved. We can similarly show that module

action is preserved for all the other Z-generators of ann(〈1,−δ1δ
′
1〉) as well, so we are

done. �

6.4 The General Case of R = R1

∐
R2

We may extend what we have above to a more general setting. Let R1 and R2 be abstract

Witt rings with square class groups S(R1) = 〈β1, · · · , βn〉 and S(R2) = 〈β′1, · · · , β′m〉.

Suppose R̃1 and R̃2 are quadratic extensions of R1 (with respect to β1) and R2 (with

respect to β′1). We make the additional assumption that we are away from the case of

β1 = −1 in R1 and R2 is characteristic 2 (ie. −1 is a square) and vice versa.

Theorem 6.4.1. Let R1 and R2 be abstract Witt rings, and let β1 ∈ S(R1) and β′1 ∈

S(R2). Assuming the conditions we have above, we have

(R1

∐
R2)[

√
[β1, β′1]] ∼= R̃1

∐
R̃2

∐
Z/2Z[∆1].

Proof. Per our assumptions, we have the following short exact sequences:

0→ R1/R1 · 〈1,−β1〉
r1→ R̃1

s1→ ann(〈1,−β1〉)→ 0

0→ R2/R2 · 〈1,−β′1〉
r2→ R̃2

s2→ ann(〈1,−β′1〉)→ 0

with the corresponding lifts l1 : ann(〈1,−β1〉)→ R1 and l2 : ann(〈1,−β′1〉)→ R2. With-

out loss of generality, we may assume the outputs of l1 and l2 are both even dimensional.

In fact, we can ensure that on the generators of ann(〈1,−β1〉), the output of l1 would be

two dimensional (similarly for l2).

Here, we note that given R = R1

∐
R2, we have S(R) = S(R1) × S(R2). So, in R,

we denote 〈βi〉 = [βi, 1] and 〈β′j〉 = [1, β′j]. Let us now look at R/R · 〈1,−β1β
′
1〉. Here,

we note that 〈1,−β1β′1〉 = 0, which means 〈β1〉 = 〈β′1〉. We notice that 〈β1βi1 · · · βik〉 =

(β1βi1 · · · βik , 1) = (βi1 · · · βik , β′1) = (βi1 · · · βik , 1) + (1, β′1)− (1, 1) = 〈βi1 · · · βik〉+ 〈β′1〉−
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〈1〉. As before, we can show 〈1,−β1〉 has 2-torsion. From this, we see that S(R) can

be generated by β, β1, · · · , βn, β′1, · · · , β′m. So for R/R · 〈1,−β1β
′
1〉, what we have is that

〈β1〉 = 〈β′1〉.

We now look at R′ = R̃1

∐
R̃2

∐
Z/2Z[∆1], which is what we want to show to be the

quadratic extension of R. We notice that for S(R̃1) can be generated by

〈r1(β2) · · · , r1(βn), γ1, · · · , γp〉, for γi ∈ S(R1). Similarly, S(R̃2) can be generated by

〈r2(β′2) · · · , r2(β′n), γ′1, · · · , γ′q〉, for γ′j ∈ S(R2). In this context, we denote 〈ε〉 = [1, 1,∆],

r1(〈βi〉) = [r1(〈βi〉), 1, 1], 〈γi〉 = [γi, 1, 1], r2(〈β′j〉) = [1, r2(〈β′j〉), 1], and 〈γ′j〉 = [1, γ′j, 1].

So here, as S(R′) = S(R̃1)× S(R̃2)× S(Z/2Z[∆1]), we can generate S(R′) with

r1(β2), · · · , r1(βn), r2(β′2), · · · , r2(β′m), γ1, · · · , γp, γ′1, · · · , γ′q, ε.

Let us now construct r : R1

∐
R1 → R̃

∐
R̃′
∐

Z/2Z[∆1] as follows: 〈1〉 7→ 〈1〉, 〈βi〉 7→

〈r1(〈βi〉)〉 for 1 < i ≤ n, 〈β′j〉 7→ 〈r2(〈β′j〉)〉 for 1 < i ≤ n, and 〈β1〉 7→ 〈ε〉. However, if

β1 = −1 in R1, and β′j = −1 in R2 for some j > 1, then we instead send 〈β′j〉 7→ −〈ε〉

(since in this case, we would have 〈β′j〉 = [1,−1] = −[−1, 1] = −〈β1〉). Similarly, if

β′1 = −1 in R2 and βk = −1 in R1 for k > 1, then we instead send 〈βk〉 7→ −〈ε〉. It can be

seen that this is an injection, since r1 and r2 are injections (in particular, we note r takes

forms such as 〈1,−βj〉 to 〈1,−r1(〈βj〉)〉 = [1− r1(〈βj〉), 0, 0], which nicely corresponds to

the two dimensional form r1(〈1,−βi〉) in R̃1).

To show that r is well defined, we need to consider when any of the βi or β′j are

−1 in their respective domains, since in this case, we have [−1, 1] = −[1,−1]. If βi =

−1 in R1 and β′j = −1 in R2 for i, j > 1, we need to show that r(〈βi〉) = −r(〈β′j〉)

(since −[1,−1] = [−1, 1]). Indeed, we see that r(〈βi〉) = [r1(〈−1〉), 1, 1] = [−1, 1, 1] =

−[1,−1, 1] = −[1, r(〈β′j〉), 1]. We note that we are away from the case of β1 = −1 and

β′j 6= −1 in R2 for all j (similarly if βi 6= −1 in R1 for all i). If β1 = −1 in R1 and

β′j = −1 in R2 for j > 1, well definition comes for free by construction. If β1 = β′1 = −1

in their respective rings, then we see that r(β1) = r(β′1). However, we note that in this
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situation, R̃1, R̃2, and Z/2Z[∆1] all have characteristic 2, and thus, r(β1) = −r(β1), so

indeed, we have r(β1) = −r(β′1).

We now inspect ann(〈1,−β1β
′
1〉). It easy to see that this is simply

ann(〈1,−β1)⊕ ann(〈1,−β′1)〉, since anything in ann(〈1,−β1) and ann(〈1,−β′1) are even

dimensional. Moreover, we see that ann(〈1,−β1β
′
1〉) can be generated by the follow-

ing: [q, 0] where q ∈ ann(〈1,−β1)〉 is an additive generator, and [0, q′] where q′ ∈

ann(〈1,−β′1〉) is an additive generator.

Now, we construct s : R′ → ann(〈1,−β1β
′
1〉), as follows:

• 〈1〉 7→ 0

• 〈ε〉 7→ 0

• 〈r1(βi1 · · · βik)〉 7→ 0 for 1 < i1 < · · · < ik ≤ n

• 〈r2(β′i1 · · · β
′
ij

)〉 7→ 0 for 1 < i1 < · · · < ij ≤ m

• 〈1,−γi1 · · · γic〉 7→ [s1(〈1,−γi1 · · · γic〉), 0]

(ie. 〈γi1 · · · γic〉 7→ [s1(〈γi1 · · · γic〉), 0]) for 1 ≤ i1 < · · · < ic ≤ p

• 〈1,−γ′i1 · · · γ
′
id
〉

7→ [0, s2(〈1,−γ′i1 · · · γ
′
id
〉)]

(ie. 〈γ′i1 · · · γ
′
id
〉 7→ [0, s2(〈γ′i1 · · · γ

′
id
〉)]) for 1 ≤ i1 < · · · < id ≤ q

• 〈r1(βi1 · · · βik)γi1 · · · γic〉

7→ [βi1 · · · βiks1(γj1 · · · γjc), 0] (= [βi1 · · · βik , 1]⊗ [s1(γj1 · · · γjc), 0])

for 1 < i1 < · · · < ij ≤ n and 1 ≤ j1 < · · · < jc ≤ p

• 〈r2(β′i1 · · · β
′
ij

)γ′i1 · · · γ
′
ic〉

7→ [0, β′i1 · · · β
′
ij
s2(γ′j1 · · · γ

′
jd

)]
(

= [1, β′i1 · · · β
′
ij

]⊗ [0, s2(γ′j1 · · · γ
′
jd

)]
)

for 1 < i1 < · · · < ij ≤ m and 1 ≤ j1 < · · · < jd ≤ q.
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Since s1 and s2, we see that s is also onto.

By our construction of r and s, it is readily checked that the following sequence is

exact:

0→ R/R · 〈1,−β1β
′
1〉

r→ R′
s→ ann(〈1,−β1β

′
1〉)→ 0.

We have the corresponding lift l : ann(〈1,−β1β
′
1〉)→ R′ defined as follows: for a genera-

tor of the form [q, 0], where q is a generator of ann(〈1,−β1〉), we have [q, 0] 7→ [l1(q), 0, 0]

(indeed, l1(q) is even dimensional), and given a generator of the form [0, q′], we send

[0, q′] 7→ [0, l2(q′), 0]. What is left is to show that this lift preserves the module action.

Let us take a generator [q, 0] of ann(〈1,−β1β
′
1〉), where q is a generator of ann(〈1,−β1〉).

We first show that l(〈βi〉 ⊗ [q, 0]) = r(〈βi〉)l([q, 0]), for i > 1, such that if β′1 = −1 in R2,

our βi 6= −1 in R1. Indeed, we have that

l(〈βi〉 ⊗ [q, 0]) = l([〈βi〉, 1] · [q, 0])

= l([〈βi〉 ⊗ q, 0])

= [l1(〈βi〉 ⊗ q), 0, 0]

= [r1(〈βi〉)⊗ l1(q), 0, 0]

= [r1(〈βi〉), 1, 1]⊗ [l1(q), 0, 0]

= r(〈βi〉)⊗ l([q, 0])

Now, if β′1 = −1 in R2 and βi = −1 in R1, we see that

l(〈βi〉 ⊗ [q, 0]) = l([−1, 1] · [q, 0])

= l([−q, 0])

= −l([q, 0])

= [−l1(q), 0, 0]

= [−1,−1,∆]⊗ [l1(q), 0, 0]

= −〈ε〉 ⊗ l([q, 0])

= r(〈βi〉)⊗ l([q, 0])

Let us now show that l(〈β′i〉 ⊗ [q, 0]) = r(〈β′i〉)l([q, 0]), for i > 1, such that if β1 = −1

in R1, our β′i 6= −1 in R2. To see this, we see
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l(〈β′i〉 ⊗ [q, 0]) = l([1, 〈β′i〉]⊗ [q, 0])

= l([q, 0])

= [l1(q), 0, 0]

= [l1(q), 0, 0]⊗ [1, r1(〈β′i〉), 1]

= r(〈β′i〉)⊗ l([q, 0])

Now, if β1 = −1 in R1 and β′i = −1 in R2, we see that

l(〈β′i〉 ⊗ [q, 0]) = l([1,−1] · [q, 0])

= l([q, 0])

= [l1(q), 0, 0]

On the other hand, we have

l(βi)⊗ l([q, 0]) = −〈ε〉 ⊗ l([q, 0])

= −[1, 1,∆]⊗ [l1(q), 0, 0]

= [−l1(q), 0, 0]

However, as R̃1 is characteristic 2 (as we are taking the square root of −1), we have

l1(q) = −l1(q) in R1, and as such, we do indeed have l(〈β′i〉 ⊗ [q, 0]) = l(βi)⊗ l([q, 0]).

Finally, we check l(〈β1〉 ⊗ [q, 0]) = r(〈β1〉)l([q, 0]). To see this, we note that since

〈1,−β1〉 ⊗ q = 0, then 〈β1〉 ⊗ q = q.

l(〈β1〉 ⊗ [q, 0]) = l([〈β1〉, 1] · [q, 0])

= l([〈β1〉 ⊗ q, 0])

= l([q, 0])

= [l1(q), 0, 0]

= [l1(q), 0, 0]⊗ [1, 1,∆]

= l(q)⊗ 〈ε〉
= r(〈β1〉)⊗ l([q, 0])

Thus, we see that the module action is preserved on generators of the form [q, 0]. We

can similarly show this for generators of the form [0, q′], and so, we are done. �
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6.5 Settling an Edge Case

We now assume we are in the situation that we avoided above, where β1 = −1 and R2 is

characteristic 2 (ie. β′j 6= −1 for all j).

Theorem 6.5.1. Let R1 and R2 be abstract Witt rings, and let β1 ∈ S(R1) and β′1 ∈

S(R2). Suppose β1 = −1 and R2 is of characteristic 2. Then

(R1

∐
R2)[

√
(−1, β′1)] ∼= R̃1

∐
R̃2

∐
Z/4Z.

Proof. As before, we have the following short exact sequences:

0→ R1/R1 · 〈1,−β1〉
r→ R̃1

s→ ann(〈1,−β1〉)→ 0

0→ R2/R2 · 〈1,−β′1〉
r′→ R̃2

s′→ ann(〈1,−β′1〉)→ 0

with the corresponding lifts l1 : ann(〈1,−β1〉)→ R1 and l2 : ann(〈1,−β′1〉)→ R2. With-

out loss of generality, we may assume the outputs of l1 and l2 are both even dimensional.

In fact, we can ensure that on the generators of ann(〈1,−β1〉), the output of l1 would

be two dimensional (similarly for l2). In this case, however, we show that the quadratic

extension in respect to [−1, β′1] is R̃1

∐
R̃2

∐
Z/4Z.

We now look at R′ = R̃1

∐
R̃2

∐
Z/4Z, which is what we want to show to be the

quadratic extension of R. We notice that for S(R̃1) can be generated by

〈r1(β2) · · · , r1(βn), γ1, · · · , γp〉, for γi ∈ S(R1). Similarly, S(R̃2) can be generated by

〈r2(β′2) · · · , r2(β′n), γ′1, · · · , γ′q〉, for γ′j ∈ S(R2). In this context, we denote 〈ε〉 = [1, 1,−1],

r1(〈βi〉) = [r1(〈βi〉), 1, 1], 〈γi〉 = [γi, 1, 1], r2(〈β′j〉) = [1, r2(〈β′j〉), 1], and 〈γ′j〉 = [1, γ′j, 1].

So here, as S(R′) = S(R̃1)× S(R̃2)× S(Z/2Z[∆1]), we can generate S(R′) with

r1(β2), · · · , r1(βn), r2(β′2), · · · , r2(β′m), γ1, · · · , γp, γ′1, · · · , γ′q, ε.

Let us now construct r : R1

∐
R1 → R̃

∐
R̃′
∐

Z/4Z in the same way we did above,

as follows: 〈1〉 7→ 〈1〉, 〈βi〉 7→ 〈r1(〈βi〉)〉 for 1 < i ≤ n, 〈β′j〉 7→ 〈r2(〈β′j〉)〉 for 1 < i ≤ n,

and 〈β1〉 7→ 〈ε〉. It can be seen that this is an injection, since r1 and r2 are injections (in
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particular, we note r takes forms such as 〈1,−βj〉 to 〈1,−r1(〈βj〉)〉 = [1− r1(〈βj〉), 0, 0],

which nicely corresponds to the two dimensional form r1(〈1,−βi〉) in R̃1). It is also worth

noting that in this case, 〈β1〉 = [−1, 1] = 〈−1〉, since R2 is characteristic 2, which maps

to 〈ε〉 = [1, 1,−1], which is also 〈−1〉 in R′, as R̃1 and R̃2 is characteristic 2.

The construction of s : R′ → ann(〈1,−β1β
′
1〉) is also akin to the above, as follows:

• 〈1〉 7→ 0

• 〈ε〉 7→ 0

• 〈r1(βi1 · · · βik)〉 7→ 0 for 1 < i1 < · · · < ik ≤ n

• 〈r2(β′i1 · · · β
′
ij

)〉 7→ 0 for 1 < i1 < · · · < ij ≤ m

• 〈1,−γi1 · · · γic〉 7→ [s1(〈1,−γi1 · · · γic〉), 0] (ie. 〈γi1 · · · γic〉

7→ [s1(〈γi1 · · · γic〉), 0]) for 1 ≤ i1 < · · · < ic ≤ p

• 〈1,−γ′i1 · · · γ
′
id
〉 7→ [0, s2(〈1,−γ′i1 · · · γ

′
id
〉)]

(ie. 〈γ′i1 · · · γ
′
id
〉 7→ [0, s2(〈γ′i1 · · · γ

′
id
〉)]) for 1 ≤ i1 < · · · < id ≤ q

• 〈r1(βi1 · · · βik)γi1 · · · γic〉

7→ [βi1 · · · βiks1(γj1 · · · γjc), 0] (= [βi1 · · · βik , 1]⊗ [s1(γj1 · · · γjc), 0])

for 1 < i1 < · · · < ij ≤ n and 1 ≤ j1 < · · · < jc ≤ p

• 〈r2(β′i1 · · · β
′
ij

)γ′i1 · · · γ
′
ic〉

7→ [0, β′i1 · · · β
′
ij
s2(γ′j1 · · · γ

′
jd

)]
(

= [1, β′i1 · · · β
′
ij

]⊗ [0, s2(γ′j1 · · · γ
′
jd

)]
)

for 1 < i1 < · · · < ij ≤ m and 1 ≤ j1 < · · · < jd ≤ q.

Since s1 and s2, we see that s is also onto.

As before, by our construction of r and s, it is readily checked that the following

sequence is exact:

0→ R/R · 〈1,−β1β
′
1〉

r→ R′
s→ ann(〈1,−β1β

′
1〉)→ 0.
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We have the corresponding lift l : ann(〈1,−β1β
′
1〉)→ R′ defined as follows: for a genera-

tor of the form [q, 0], where q is a generator of ann(〈1,−β1〉), we have [q, 0] 7→ [l1(q), 0, 0]

(indeed, l1(q) is even dimensional, and given a generator of the form [0, q′], we send

[0, q′] 7→ [0, l2(q′), 0]. The preservation of the module action can be shown in the exact

way as we did above. �

Remark 6.5.1. We note that in this case, R/R·〈1,−[−1, α]〉 does not have characteristic

2, in which case, we would not be able to inject it into

R̃1

∐
R̃2

∐
Z/2Z[∆1], which does have characteristic 2.

6.6 The Case of β1 = 1

So far, what we’ve been doing is taking the square root of [β1, β
′
1], where both β1, β

′
1 are

not squares in their respective ring. In this section, we discuss what taking the square

root of [1, β′1] would yield (where β′1 ∈ S(R2) is not 1).

In this section, we show that given R = R1

∐
R2, if we take the square root of [1, β′1],

we get R1

∐
R1

∐
R̃2, with R̃2 being the quadratic extension of R2 with β1.

Theorem 6.6.1. Let R1 and R2 be abstract Witt rings, and let β′1 ∈ S(R2) be not 1. Let

R̃2 be the quadratic extension of R2 by β′1. Let R = R1

∐
R2. Then

R[
√

[1, β′1]] ∼= R1

∐
R1

∐
R̃2.

Proof. We note that we have the short exact sequence given by 0→ R2/R2 · 〈1,−β′1〉
r2→

R̃2
s2→ ann(〈1,−β′1〉)→ 0. We also have a corresponding lift l2 : ann(〈1,−β′1〉)→ R̃2. As

before, we assume the outputs of l2 are even dimensional. In fact, we can ensure that on

the generators of ann(〈1,−β1〉), the output of l2 would be two dimensional.

First, let us look at R/R · 〈1,−[1, β′1]〉 and ann(〈1,−[1,−β′1]〉). We note that we are

quotienting by the ideal generated [1, 1]− [1, β′1] = [0, 1− β′1]. It can be readily checked
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that this is isomorphic to R1

∐
(R2/R2 · 〈1,−β′1〉) using the obvious isomorphism. We

can easily check that ann(〈1,−[1, β′1]〉) = R1

∐
ann(〈1,−β′1〉).

With this, let us construct r : R1

∐
(R2/R2 · 〈1,−β′1〉 → R1

∐
R1

∐
R̃2) by [a, b] 7→

[a, a, r2(b)]. It is clear that r is injective, as r2 is injective. We also construct s :

R1

∐
R1

∐
R̃2 → R1

∐
ann(〈1,−β1〉) with [a, a′, b] 7→ [a−a′, s(b)]. From this, it is readily

checked that 0 → R1

∐
(R2/R2 · 〈1,−β′1〉)

r→ R1

∐
R1

∐
R̃2

s→ R1

∐
ann(〈1,−β′1〉) → 0

is an exact sequence.

Here, we have a corresponding lift l : R1

∐
ann(〈1,−β′1〉)→ R1

∐
R1

∐
R̃2 such that

[a, b] 7→ [a, 0, l(b)]. What is left is to check the module action is preserved.

Take [a, b] ∈ R1

∐
R2/R2 · 〈1,−β′1〉 and [a′, b′] ∈ R1

∐
ann(〈1,−β′1〉). Let us show

that r([a, b])⊗ l([a′, b′]) = l([a, b]⊗ [a′, b′]).

r([a, b])⊗ l([a′, b′]) = [a, a, r2(b)]⊗ [a′, 0, l(b′)]

= [aa′, 0, r2(b)l(b′)]

= [aa′, 0, l(bb′)]

= l([aa′, bb′])

= l([a, b]⊗ [a′, b′])

�
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Chapter 7

Future Directions

In this section, we discuss further work to bring this problem to completion, and other

work related to this problem.

7.1 Witt Rings of Local Type

There is a class of Witt rings that we have not yet discussed: Witt rings of local type.

These rings can be described by its quaternionic structure, where the pairing can be

represented as a skew-symmetric matrix. More intuitively, they can be realized as the

Witt ring a finite (possibly non-proper) extension of some p-adic field.

Definition 7.1.1. An finitely generated abstract Witt ring is of elementary type if

it can be constructed from Z, Z/4Z, Z/2Z, and Witt rings of local type by taking fiber

products and group rings.

By extending our theory to Witt rings of local type, we would be able to find the

quadratic extension of any Witt ring of elementary type. It’s been conjectured that

every finitely generated abstract Witt ring is of elementary type, and as such, finding the

structure of quadratic extensions of abstract Witt rings of elementary type is of interest.
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7.2 Uniqueness of Quadratic Extension

It is worth noting that the way we defined the quadratic extension for an abstract Witt

ring does not say anything about uniqueness. In particular, we defined the quadratic

extension to be an abstract Witt ring that fits into a certain exact sequence, with a certain

module action being respected. But, given an abstract Witt ring R, and a ∈ S(R), can

there be two (non-isomorphic) abstract Witt rings R1 and R2, along with corresponding

maps, such that we have exact sequences

0→ R/R · 〈1,−a〉 r1→ R1
s1→ ann(〈1,−b〉)→ 0

0→ R/R · 〈1,−a〉 r2→ R2
s2→ ann(〈1,−b〉)→ 0

along with our desired module action being respected? If so, how are the two related?

7.3 Relation to Profinite Groups

As mentioned in the introduction, one of the motivations for abstracting the Witt ring

of quadratic field extensions is to further study the relation between Witt rings and their

corresponding profinite groups. In the field case, we can determine all possible structures

on profinite Galois group Gal(Fq/F ) from W (F ), where Fq is the quadratic closure of F .

By starting off with an abstract Witt ring (ie. without a field), we can more abstractly

study the relation between Witt rings and profinite groups.
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